第2章自动控制系统的数学模型-课件_第1页
第2章自动控制系统的数学模型-课件_第2页
第2章自动控制系统的数学模型-课件_第3页
第2章自动控制系统的数学模型-课件_第4页
第2章自动控制系统的数学模型-课件_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 控制系统的数学模型2.1 建立动态微分方程2.2 非线性系统微分方程模型的线性化2.3 传递函数2.4 系统动态结构图2.5 系统的传递函数 2.6 信号流图1第二章 控制系统的数学模型2.1 建立动态微分方程1数学模型 是描述系统输入、输出变量以及内部各变量之间关系的数学表达式。 静态条件下系统变量间的代数方程。系统变量各阶导数间的微分方程。深入了解元件及系统的静态和动态特性,准确建立它们的数学模型。静态数学模型:动态数学模型:建模:数学模型的几种表示方式时(间)域模型:微分方程、差分方程、状态空间表达式频(率)域模型:复域模型: 传递函数、动态结构图、信号流图 频率特性 2数学模型

2、 是描述系统输入、输出变量以及内部各变量之间关系的数数学分析法:用微分方程的求解、分析系统的方法。工程分析法:把用传递函数、频率特性求解、分析系统的方法。3数学分析法:用微分方程的求解、分析系统的方法。3建立控制系统数学模型的方法 分析法: 对系统各部分的运动机理进行分析,根据它们所依据的物理规律、化学规律分别列写运动方程。建立系统数学模型的几个步骤:(1)建立物理模型;(2)列写原始方程。利用适当的物理定律(如牛顿定律、基尔霍夫电流和电压定律、能量守恒定律等);(3)选定系统的输入量、输出量及状态变量(在建立状态模型时要求),消去中间变量,建立适当的输入输出模型或状态空间模型。实验法: 人为

3、施加某种测试信号,记录输入输出数据,并用适当的数学模型去逼近系统辩识。4建立控制系统数学模型的方法 分析法: 对系统各部分的运例 RLC电路。(2). 根据电路原理列出微分方程: 根据基尔霍夫定律有(3). 消去中间变量,得到微分方程: 消去中间变量(),可得(线性定常二阶微分方程式) 建立动态微分方程(1). 确定输入量,输出量为ur(t) 、uc(t)5例 RLC电路。(2). 根据电路原理列出微分方程:(3)建立动态微分方程例2 弹簧质量阻尼器系统。(1)确定输入、输出量为F 、y (2)根据力学、运动学原理列微分方程f 阻尼系数 Fs (t) = Ky K 弹性系数 (3)消去中间变量

4、,可得电路微分方程(线性定常二阶微分方程式) 具有相同数学模型的不同物理系统称之为相似系统。在相似系统中,占据相应位置的物理量称为相似量。对于同一个物理系统,当输入量、输出量改变时,所求出的数学模型却是不同的。利用相似系统的概念,我们可以用一个易于实现的系统来研究与其相似的复杂系统,并根据相似系统的理论出现了仿真研究法。6建立动态微分方程例2 弹簧质量阻尼器系统。(1)确定输非线性微分方程模型的线性化齿轮减速器在控制系统中非线性是绝对的,而线性是相对的 7非线性微分方程模型的线性化齿轮减速器在控制系统中非线性是绝对非线性微分方程模型的线性化非线性模型的线性化: 将非线性微分方程转换为近似的线性

5、微分方程。 方法:(1)小偏差法(或称增量法) ;(2)针对不同情况的简化方法。 饱和特性的放大器小信号输入时 机械系统动态性能,在有润滑剂的情况下,往往忽略小的干摩擦,只考虑与速度成比例的粘性摩擦力 将非线性特性用一段直线来代替 8非线性微分方程模型的线性化非线性模型的线性化: 将非线性微分非线性微分方程模型的线性化一假设:x、y在平衡点(x0、y0)附近作增量变化,即x=x0+x ,y=y0+y二近似处理:在平衡点(x0、y0)处,以曲线的切线代替曲线,得到近似式原非线性方程的线性化增量方程 三数学方法: 设具有连续变化的非线性函数y=f(x),若取某一平衡状态为工作点A(x0,y0)。A

6、点附近有点为B(x0+x,y0+y),当x,y很小时,AB段看成线性的。设f(x)在A(x0,y0)点连续可微,则将函数在该点展开为泰勒级数,得:9非线性微分方程模型的线性化一假设:x、y在平衡点(x0、y非线性微分方程模型的线性化x是微小量,故可略去高阶无穷小项及余项 y=kx 在此的输入与输出针对平衡点(x0、y0)的增量,当平衡点位置变化时,输入与输出关系就变化了。 注意:10非线性微分方程模型的线性化x是微小量,故可略去高阶无穷小项非线性微分方程模型的线性化两个变量的非线性函数 y=f(x1,x2) 略去二级以上导数项,并令yy-f(x10,x20) x1=x-x10 x2=x-x20

7、 则线性化增量方程将为 11非线性微分方程模型的线性化两个变量的非线性函数 y=f(非线性微分方程模型的线性化总结 (1)线性化方程描述的不是自变量自身,而是变量对平衡点的增量,有时为了简便,增量符号常常略去。 (2)线性化方程中的增量,不应认为是无穷小量,而应理解为是有工程实际概念的较小的变化量。(3)平衡点应依据系统的平衡工作状态而定,各部件应统一,而不能任意选取。否则线性化方程中的有关系数将不符合实际。(4)关于增量假设的可靠性:所有变量都在平衡点附近变化。(5) 尽管是小范围变化,线性化增量方程也仍是近似方程。(6)对于某些严重的非线性,如继电特性、间隙、摩擦特性等,不能进行求导运算,

8、因此原则上不能用小偏差法进行线性化,只能作为非线性问题处理。 (7)如果多变量非线性函数 y=f(x1,x2),其平衡点(x10,x20,y0) 则线性化增量方程将为 12非线性微分方程模型的线性化总结 (1)线性化方程描述的不是自传递函数拉普拉斯变换13传递函数拉普拉斯变换13定义传递函数线性系统在零初始条件下,输出信号的拉氏变换与输入信号的拉氏变换之比。线性定常系统初始情况为零时,两端取拉氏变换: 传递函数的两种表达形式零极点表示形式时间常数表示形式14定义传递函数线性系统在零初始条件下,输出信号的拉氏变换与输入关于传递函数的几点说明 1.递函数的概念只适用于线性定常系统。 2.传递函数可

9、以作为系统的动态数学模型,与输入量的形式(幅度与大小)无关。3.传递函数原则上不能反映系统在非零初始条件下的全部运动规律 。4.传递函数分子多项式的阶次总是低于至多等于分母多项式的阶次,即mn。这是由于系统中总是含有较多的惯性元件以及受到能源的限制所造成的。 5.一个传递函数只能表示一个输入对一个输出的关系 。6.传递函数已知,那么可以研究系统在各种输入信号作用下的输出响应。7.一旦建立G(s),可以给出该系统动态特性的完整描述,与其它物理描述不同 。 8. 若加于系统的输入信号是单位脉冲函数(t),则其输出量的时间响应函数等于该系统传递函数的拉氏反变换 。15关于传递函数的几点说明 1.递函

10、数的概念只适用于线性定常系统关于传递函数的几点说明 9. 传递函数与微分方程之间有关系: 如果将置换 10. 传递函数提供了两条研究系统的途径:传递函数与系统内部的结构系数a0 an,b0 bn有关,则通分析系统内部的结构了解系统的性能。传递函数定义为输出信号的拉氏变化与输入信号的拉氏变化之比,对于一个复杂系统而言,可以通过给系统输入一个给定的输入信号,从所获得的输出信号中,分析系统的特性实验分析法。 11. 在求实际系统的传递函数时,总是将一个系统分解成若干个单元,先分别求出各单元的传递函数,然后再综合。 16关于传递函数的几点说明 9. 传递函数与微分方程之间有关系:自动控制原理国家精品课

11、程 浙江工业大学自动化研究所17传递函数的性质: (1)传递函数只取决于系统或元件的结构和参数,与输 入输出无关;(2)传递函数概念仅适用于线性定常系统,具有复变函 数的所有性质;(3)传递函数是复变量s 的有理真分式,即nm;(4)传递函数是系统冲激响应的拉氏变换;(5)传递函数与真正的物理系统不存在一一对应关系;(6)由于传递函数的分子多项式和分母多项式的系数均 为实数,故零点和极点可以是实数,也可以是成对 的共轭复数。 17自动控制原理国家精品课程 浙江工业大学自动化研究所典型环节及其传递函数比例环节实例:分压器,放大器,无间隙无变形齿轮传动等。时域方程:传递函数:放大环节,无惯性环节放

12、大系数特点:输入量与输出量的关系为一种固定的比例关系。积分环节特点:输出量与输入量的积分成正比例,当输入消失,输出具有记忆功能。时域方程:传递函数:实例: 电机角速度与角度关系,模拟计算机积分器等。18典型环节及其传递函数比例环节实例:分压器,放大器,无间隙无变 惯性环节时域方程:传递函数:当输入为单位阶跃函数时当k=1时,输入为单位阶跃函数时,时域响应曲线典型环节及其传递函数特点:只包含一个储能元件,使其输出量不能立即跟随输入量的变化,存在时间上的延迟。k为放大系数,T为时间常数。非周期环节19 惯性环节时域方程:传递函数:当输入为单位阶跃函数时当k=时域形式有三种形式:相应的传递函数为:典

13、型环节及其传递函数微分环节:纯微分一阶微分二阶微分环节特点:是积分环节的逆运算,其输出量反映了输入信号的变化趁势。 在实际系统中,由于存在惯性,单纯的微分环节是不存在的,一般都是微分环节加惯性环节。实际微分环节20时域形式有三种形式:相应的传递函数为:典型环节及其传递函数微时域方程:传递函数:传递函数有两种情况:当 时,可分为两个惯性环节相乘。即:有两个实数极点:典型环节及其传递函数 振荡环节:21时域方程:传递函数:传递函数有两种情况:当 分析:y(t)的上升过程是振幅按指数曲线衰减的的正弦运动。与 有关。 反映系统的阻尼程度,称为阻尼系数, 称为无阻尼振荡圆频率。当 时,曲线单调升,无振荡

14、。当 时,曲线衰减振荡。 越小,振荡越厉害。若 ,传递函数有一对共轭复数。还可以写成:设输入为:则 振荡环节:特点:有两个独立的储能元件,可进行能量交换,其输出出现振荡。22分析:y(t)的上升过程是振幅按指数曲线衰减的的正弦运动大写小写英文注音国际音标注音中文注音alpha alfa阿耳法betabeta贝塔gammagamma伽马detadelta德耳塔epsilonepsilon艾普西隆zetazeta截塔etaeta艾塔thetaita西塔iotaiota约塔kappakappa卡帕lambdalambda兰姆达mumiu缪nuniu纽xiksi可塞omicronomikron奥密可戎

15、pipai派rhorou柔sigma sigma西格马tautau套upsilonjupsilon衣普西隆phifai斐chikhai喜psipsai普西omegaomiga欧米伽23大写小写英文注音国际音标注音中文注音alpha alfa它的输出是经过一个延迟时间后,完全复现输入信号。 延迟环节是一个非线性的超越函数,所以有延迟的系统是很难分析和控制的。为简单起见,化简如下:或典型环节及其传递函数 延迟环节时滞,时延环节时域方程:传递函数:特点: 输出量能准确复现输入量,但须延迟一固定的时间间隔。实例:管道压力、流量等物理量的控制,其数学模型就包含有延迟环节。24它的输出是经过一个延迟时间后

16、,完全复现输入信号。 惯性环节从输入开始时刻就已有输出,仅由于惯性,输出要滞后一段时间才接近所要求的输出值惯性环节与延迟环节的区别: 延迟环节从输入开始后在0时间内没有输出,在t =之后,才有输出。25惯性环节从输入开始时刻就已有输出,仅由于惯性,输出要滞后一段控制系统的传递函数求一个较为复杂的控制系统的传递函数,同样需要首先列写控制系统中各个变量之间的微分方程,得到微分方程组。根据列写的微分方程组,可以通过两种途径求系统的传递函数: 一是首先在微分方程组中消去中间变量,然后在零初始条件下进行拉氏变换,求得系统的传递函数; 二是先对微分方程组在零初始条件下进行拉氏变换,然后在获得的代数方程组中

17、消去中间变量,求得系统的传递函数。 P25 例2.926控制系统的传递函数求一个较为复杂的控制系统的传递函数,同样需系统动态结构图传递函数的缺点: (由系统动态微分方程,经拉氏变换得系统象方程组,经消除中间变量得传递函数) (1)需要对代数(象)方程组消元,如果方程组的子方程数较多,消元仍是比较麻烦; (2)仅反映输入输出两个变量,信号中间的传递过程得不到反映。动态结构图的优点: (1)用结构图求系统总传递函数,避开繁琐的象方程组联立消元计算; (2)能形象直观地表明输入信号在系统或元件中的传递过程。 特点:具有图示模型的直观,又有数学模型的精确。27系统动态结构图传递函数的缺点:27控制系统

18、的结构图结构图的组成结构图是描述系统中各元部件的功能和信号之间传递关系的图解表示。 (1)信号线:带有箭头的直线。箭头表示信号的传递方向,线上标记信号的时间函数或象函数;(2)引出点(测量点):信号引出或测量的位置。从同一位置引出的信号在数值和性质方面完全相同;(3)比较点(综合点):对两个以上的信号进行加减运算。用“+”、“-”表示,“+”有时可省略;(4)方框(环节):表示方框的输出信号与输入信号之间的传递关系。方框中写入元部件或系统的传递函数。28控制系统的结构图结构图的组成结构图是描述系统中各元部件的功能结构图的概念拉氏变换 RC网络的微分方程式为系统动态结构图29结构图的概念拉氏变换

19、 RC网络的微分方程式为系统动态结构图2自动控制原理国家精品课程 浙江工业大学自动化研究所30几种基本的结构框图 30自动控制原理国家精品课程 浙江工业大学自动化研究所系统动态结构图的建立(1)建立控制系统各元部件的微分方程。在建立微分方程时,应分清输入量、输出量,同时应考虑相邻元件之间是否有负载效应。(2)对元件的微分方程进行拉氏变换,并作出各元件的结构图。(3)按照系统中各变量的传递顺序,依次将各元件的结构图连接起来,置系统的输入变量于左端,输出变量(即被控量)于右端,便得到系统的结构图。也常称方框图。31系统动态结构图的建立(1)建立控制系统各元部件的微分方程。在例1. 两级RC网络的结

20、构图 (2)连接相关信号线,得到最终结构图(1)根据原始方程建立局部结构图由于后一级RC电路是前一级的负载,所以在结构图中它们相互影响。系统动态结构图的建立32例1. 两级RC网络的结构图 (2)连接相关信号线,得到最关于结构图的几点说明:1在结构图中,每一方框中的传递函数都应该是考虑了负载效应后的传递函数。因此在结构图中,后一方框对前一方框无影响,信号仅按箭头的方向传递。2描述一个系统的结构图不是唯一的。选择不同的中间变量可得到不同的结构图,但系统总的传递函数唯一,也就是说系统的输入输出关系是不会改变的。3结构图中的方框与实际系统的元部件并非一定是一一对应的。一个元件可能用多个方框表示,一个

21、方框也可能表示多个元件。4结构图包含了系统的全部内容,和微分方程、传递函数一样,也是系统的一种动态模型,是一种图形化的数学模型。系统动态结构图33关于结构图的几点说明:系统动态结构图33串联方框的等效变换结构图的等效变换等效变换:变换前后,系统输入输出总的数学关系保持不变。 一类是环节的合并,另一类是信号的分支点或相加点的移动。等效变换原则:(1)变换前后前向通路中传递函数的乘积保持不变; (2)变换前后回路中传递函数的乘积保持不变。 环节的合并结论:串联环节的等效传递函数等于所有传递函数的乘积。n为相串联的环节数 34串联方框的等效变换结构图的等效变换等效变换:变换前后,系统输结构图的等效变

22、换并联方框的等效变换结论:并联环节的等效传递函数等于所有并联环节传递函数的代数和。35结构图的等效变换并联方框的等效变换结论:并联环节的等效传递函结构图的等效变换反馈连接的等效变换消去E(s)和B(s),得 加号对应于负反馈;减号对应于正反馈。36结构图的等效变换反馈连接的等效变换消去E(s)和B(s),得结构图的等效变换比较点和引出点的移动放大缩小 缩小放大 比较点37结构图的等效变换比较点和引出点的移动放大缩小 缩小放大 结构图的等效变换 引出点 缩小放大放大缩小38结构图的等效变换 引出点 缩小放大放大缩小38 相邻比较点的移动结构图的等效变换 相邻引出点的移动39 相邻比较点的移动结构

23、图的等效变换 相邻引出点的移动39结构图的等效变换 相邻比较点和引出点的移动40结构图的等效变换 相邻比较点和引出点的移动40自动控制原理国家精品课程 浙江工业大学自动化研究所41结构图化简求系统传递函数的基本方法:(1)利用等效变换法则,通过移动比较点和引出点。消去交叉回路,变换成可以运算的几种基本的简单回路。(2)将结构图变换为代数方程组,然后求解代数方程组。(3)将结构图变换为信号流图,然后应用梅森增益公式。(4)直接应用梅森增益公式。G(s)R(s)C(s)变换法则对应于代数变换结构图对应于代数方程组结构图化简对应于代数方程组求解中消元结构图的简化41自动控制原理国家精品课程 浙江工业

24、大学自动化研究所例1 试应用结构图的等效变换求下图所示系统的传递函数。解: 相点相加42例1 试应用结构图的等效变换求下图所示系统的传递函数。解4343解: 例2 化简下面的结构图,并求传递函数44解: 例2 化简下面的结构图,并求传递函数444545简化结构图求总传递函数的一般步骤(1)确定输入量与输出量,如果作用在系统上的输入量有多个(分别作用在系统的不同部位),则必须分别对每个输入量逐个进行结构变换,求得各自的传递函数。对于有多个输出量的情况,也应分别处理。(2)若结构图中有交叉关系,应运用等效变换法则,首先将交叉消除,化为无交叉的单回路结构。(3)对于回路可由里向外变换,直至变换为一个

25、等效的方框,即得到所求的传递函数。46简化结构图求总传递函数的一般步骤(1)确定输入量与输出量,如自动控制系统的传递函数 r(t)输入信号,给定信号。通常加在控制装置的输入端。 n(t)扰动信号。一般作用在被控对象上,也可能出现在其他元部件上,甚至可能混杂在输入信号中。 e(t)=r(t)-b(t),E(s)=R(s)-B(s),为系统偏差。E(s) 前向通道:从输入信号到输出信号之间的通道; 反馈通道:从输出信号到反馈信号之间的通道。 闭环控制系统的开环传递函数 断开主反馈通路后,前向通路的传递函数与反馈通路传递函数的乘积。47自动控制系统的传递函数 r(t)输入信号,给定信号。通开环传递函

26、数的求法(1)单回路系统(2)多回路系统 a.无交错局部反馈结论:48开环传递函数的求法结论:48b.有交错局部反馈结论:49b.有交错局部反馈结论:49自动控制系统的传递函数E(s) 闭环系统的传递函数 给定输入信号作用下系统的闭环传递函数 在初始条件为零的情况下,系统输出量的拉氏变换与输入量的拉氏变换之比。输出量为:C50自动控制系统的传递函数E(s) 闭环系统的传递函数 给自动控制系统的传递函数 扰动作用下系统的闭环传递函数 干扰作用下输出函数的拉氏变换系统的总输出 E(s)51自动控制系统的传递函数 扰动作用下系统的闭环传递函数 干扰自动控制系统的传递函数 闭环系统的偏差传递函数 给定

27、输入信号作用下偏差传递函数 扰动输入作用下偏差传递函数 给定输入和扰动输入同时作用下的总偏差E(s)52自动控制系统的传递函数 闭环系统的偏差传递函数 给定输 信号流图适用于线性系统。 支路表示一个信号对另一个信号的函数关系,信号只能沿支路上的箭头指向传递。 在节点上可以把所有输入支路的信号叠加,并把相加后的信号送到所有的输出支路。 具有输入和输出节点的混合节点,通过增加一个具有单位增益的支路把它作为输出节点来处理。 对于一个给定的系统,信号流图不是唯一的,由于描述同一个系统的方程可以表示为不同的形式。信号流图的性质53 信号流图适用于线性系统。信号流图的性质53信号流图的绘制由系统微分方程绘

28、制信号流图S域的代数方程组拉氏变换系统的微分方程组信号流图例无源网络如图所示,已知电容初始电压为解:列写微分方程54信号流图的绘制由系统微分方程绘制信号流图S域的代数方程组拉氏 对以上各式在考虑初始条件的情况下进行拉式变换,得 信号流图的绘制55 对以上各式在考虑初始条件的情况下进行拉式变换,得 信号流由结构图绘制信号流图的步骤:(1)用“o”在结构图的信号线上标出信号流图的节点。具体说,在结构图的输入量和输出量信号线上、综合点之后的信号线上、方框之后的信号线上分别标出节点。信号线上有引出点时,节点标在引出点之前。(2)将节点按顺序自左向右排列,用与结构图相应的支路连接节点,方框中的传递函数为信号流图中的支路增益,综合点处的“”号用负增益表示。(3)略去只有一个输入支路和一个输出支路的节点(因为流入流出这些节点的信号相同),注意新的支路增益是与所略去节点有关的支路增益的乘积。信号流图的绘制由系统结构图绘制

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论