浙江省舟山市达标名校2023学年中考数学适应性模拟试题含答案解析_第1页
浙江省舟山市达标名校2023学年中考数学适应性模拟试题含答案解析_第2页
浙江省舟山市达标名校2023学年中考数学适应性模拟试题含答案解析_第3页
浙江省舟山市达标名校2023学年中考数学适应性模拟试题含答案解析_第4页
浙江省舟山市达标名校2023学年中考数学适应性模拟试题含答案解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、浙江省舟山市达标名校2023学年中考数学适应性模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在测试卷卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在测试卷卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试

2、结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(4,0),顶点B在第二象限,BAO=60,BC交y轴于点D,DB:DC=3:1若函数y=kx(k0,x0)的图象经过点C,则A33 B32 C22不等式组的解集为则的取值范围为( )ABCD3世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为()A7.6109B7.6108C7.6109D7.61084一、单选题如图,ABC中

3、,AD是BC边上的高,AE、BF分别是BAC、ABC的平分线,BAC=50,ABC=60,则EAD+ACD=()A75B80C85D905如图的立体图形,从左面看可能是()ABCD6上体育课时,小明5次投掷实心球的成绩如下表所示,则这组数据的众数与中位数分别是() 12345成绩(m)8.28.08.27.57.8A8.2,8.2B8.0,8.2C8.2,7.8D8.2,8.07分式的值为0,则x的取值为( )Ax=-3Bx=3Cx=-3或x=1Dx=3或x=-18如果将抛物线y=x2向右平移1个单位,那么所得的抛物线的表达式是(Ay=x2+1By=x9如图,ABC是O的内接三角形,ADBC于

4、D点,且AC=5,CD=3,BD=4,则O的直径等于( )A52B32C510如图,已知边长为2的正三角形ABC顶点A的坐标为(0,6),BC的中点D在y轴上,且在点A下方,点E是边长为2、中心在原点的正六边形的一个顶点,把这个正六边形绕中心旋转一周,在此过程中DE的最小值为()A3B4C4D62二、填空题(共7小题,每小题3分,满分21分)11已知二次函数中,函数y与x的部分对应值如下:.-101 23. 105212.则当时,x的取值范围是_.12如图,菱形的边,是上一点,是边上一动点,将梯形沿直线折叠,的对应点为,当的长度最小时,的长为_13地球上的海洋面积约为361000000km1,

5、则科学记数法可表示为_km114如图,ABCD中,ACCD,以C为圆心,CA为半径作圆弧交BC于E,交CD的延长线于点F,以AC上一点O为圆心OA为半径的圆与BC相切于点M,交AD于点N若AC=9cm,OA=3cm,则图中阴影部分的面积为_cm115某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为_人16已知抛物线y=ax2+bx+c=0(a0) 与 轴交于 ,

6、两点,若点 的坐标为 ,线段 的长为8,则抛物线的对称轴为直线 _17阅读理解:引入新数i,新数i满足分配律、结合律、交换律,已知i2=1,那么(1+i)(1i)的平方根是_三、解答题(共7小题,满分69分)18(10分)给定关于x的二次函数ykx24kx+3(k0),当该二次函数与x轴只有一个公共点时,求k的值;当该二次函数与x轴有2个公共点时,设这两个公共点为A、B,已知AB2,求k的值;由于k的变化,该二次函数的图象性质也随之变化,但也有不会变化的性质,某数学学习小组在探究时得出以下结论:与y轴的交点不变;对称轴不变;一定经过两个定点;请判断以上结论是否正确,并说明理由19(5分)已知:

7、如图.D是的边上一点,交于点M,.(1)求证:;(2)若,试判断四边形的形状,并说明理由.20(8分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CNBE,垂足为M,交AB于点N(1)求证:ABEBCN;(2)若N为AB的中点,求tanABE21(10分)如图,ABC与A1B1C1是位似图形(1)在网格上建立平面直角坐标系,使得点A的坐标为(6,1),点C1的坐标为(3,2),则点B的坐标为_;(2)以点A为位似中心,在网格图中作AB2C2,使AB2C2和ABC位似,且位似比为12;(3)在图上标出ABC与A1B1C1的位似中心P,并写出点P的坐标为_,计算四边形ABCP的周长为

8、_22(10分)如图,ABCD,12,求证:AMCN23(12分)如图1,在直角梯形ABCD中,动点P从B点出发,沿BCDA匀速运动,设点P运动的路程为x,ABP的面积为y,图象如图2所示(1)在这个变化中,自变量、因变量分别是 、 ;(2)当点P运动的路程x4时,ABP的面积为y ;(3)求AB的长和梯形ABCD的面积24(14分)某电视台的一档娱乐性节目中,在游戏PK环节,为了随机分选游戏双方的组员,主持人设计了以下游戏:用不透明的白布包住三根颜色长短相同的细绳AA1、BB1、CC1,只露出它们的头和尾(如图所示),由甲、乙两位嘉宾分别从白布两端各选一根细绳,并拉出,若两人选中同一根细绳,

9、则两人同队,否则互为反方队员若甲嘉宾从中任意选择一根细绳拉出,求他恰好抽出细绳AA1的概率;请用画树状图法或列表法,求甲、乙两位嘉宾能分为同队的概率2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【答案解析】解:四边形ABCD是平行四边形,点A的坐标为(4,0),BC=4,DB:DC=3:1,B(3,OD),C(1,OD),BAO=60,COD=30,OD=3,C(1,3),k=3,故选D点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键2、B【答案解析】求出不等式组的解集,根据已知得

10、出关于k的不等式,求出不等式的解集即可【题目详解】解:解不等式组,得不等式组的解集为x2,k12,解得k1故选:B【答案点睛】本题考查了解一元一次不等式组的应用,解此题的关键是能根据不等式组的解集和已知得出关于k的不等式,难度适中3、A【答案解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:将0.0000000076用科学计数法表示为.故选A.【答案点睛】本题考查了用科学计数法表示较小的数,一般形式为a,其中,n为由原数左边起第一个不为0的数字前面的0的个数所

11、决定.4、A【答案解析】分析:依据AD是BC边上的高,ABC=60,即可得到BAD=30,依据BAC=50,AE平分BAC,即可得到DAE=5,再根据ABC中,C=180ABCBAC=70,可得EAD+ACD=75详解:AD是BC边上的高,ABC=60,BAD=30,BAC=50,AE平分BAC,BAE=25,DAE=3025=5,ABC中,C=180ABCBAC=70,EAD+ACD=5+70=75,故选A点睛:本题考查了三角形内角和定理:三角形内角和为180解决问题的关键是三角形外角性质以及角平分线的定义的运用5、A【答案解析】根据三视图的性质即可解题.【题目详解】解:根据三视图的概念可知

12、,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【答案点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.6、D【答案解析】解:按从小到大的顺序排列小明5次投球的成绩:7.5,7.8,8.2,8.1,8.1其中8.1出现1次,出现次数最多,8.2排在第三,这组数据的众数与中位数分别是:8.1,8.2故选D【答案点睛】本题考查众数;中位数7、A【答案解析】分式的值为2的条件是:(2)分子等于2;(2)分母不为2两个条件需同时具备,缺一不可据此可以解答本题【题目详解】原式的值为2,(x-2)(x+3)=2,即x=2或x=-3;又|x|-22,即x2x=-3故选

13、:A【答案点睛】此题考查的是对分式的值为2的条件的理解,该类型的题易忽略分母不为2这个条件8、D【答案解析】本题主要考查二次函数的解析式【题目详解】解:根据二次函数的解析式形式可得,设顶点坐标为(h,k),则二次函数的解析式为y=a(x-故选D.【答案点睛】本题主要考查二次函数的顶点式,根据顶点的平移可得到二次函数平移后的解析式.9、A【答案解析】连接AO并延长到E,连接BE设AE2R,则ABE90,AEBACB,ADC90,利用勾股定理求得AD=AC2-DC2=52-【题目详解】解:如图,连接AO并延长到E,连接BE设AE2R,则ABE90,AEBACB;ADBC于D点,AC5,DC3,AD

14、C90,ADACAB=在RtABE与RtADC中,ABEADC90,AEBACB,RtABERtADC,ABAD即2RABACAD =4O的直径等于52故答案选:A.【答案点睛】本题主要考查了圆周角定理、勾股定理,解题的关键是掌握辅助线的作法.10、B【答案解析】分析:首先得到当点E旋转至y轴上时DE最小,然后分别求得AD、OE的长,最后求得DE的长即可详解:如图,当点E旋转至y轴上时DE最小;ABC是等边三角形,D为BC的中点,ADBCAB=BC=2AD=ABsinB=,正六边形的边长等于其半径,正六边形的边长为2,OE=OE=2点A的坐标为(0,6)OA=6DE=OA-AD-OE=4-故选

15、B点睛:本题考查了正多边形的计算及等边三角形的性质,解题的关键是从图形中整理出直角三角形二、填空题(共7小题,每小题3分,满分21分)11、0 x4【答案解析】根据二次函数的对称性及已知数据可知该二次函数的对称轴为x=2,结合表格中所给数据可得出答案【题目详解】由表可知,二次函数的对称轴为直线x=2,所以,x=4时,y=5,所以,y5时,x的取值范围为0 x4.故答案为0 x4.【答案点睛】此题主要考查了二次函数的性质,利用图表得出二次函数的图象即可得出函数值得取值范围,同学们应熟练掌握12、【答案解析】如图所示,过点作,交于点.在菱形中,且,所以为等边三角形, 根据“等腰三角形三线合一”可得

16、,因为,所以在中,根据勾股定理可得,因为梯形沿直线折叠,点的对应点为,根据翻折的性质可得,点在以点为圆心,为半径的弧上,则点在上时,的长度最小,此时,因为所以,所以,所以点睛:A为四边形ADQP沿PQ翻折得到,由题目中可知AP长为定值,即A点在以P为圆心、AP为半径的圆上,当C、A、P在同一条直线时CA取最值,由此结合直角三角形勾股定理、等边三角形性质求得此时CQ的长度即可.13、3.612【答案解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1

17、时,n是负数【题目详解】将361 000 000用科学记数法表示为3.612故答案为3.61214、11【答案解析】阴影部分的面积=扇形ECF的面积-ACD的面积-OCM的面积-扇形AOM的面积-弓形AN的面积【题目详解】解:连接OM,ON.OM=3,OC=6, 扇形ECF的面积 ACD的面积 扇形AOM的面积 弓形AN的面积 OCM的面积 阴影部分的面积=扇形ECF的面积ACD的面积OCM的面积扇形AOM的面积弓形AN的面积 故答案为【答案点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.15、16000【答案解析】用毕业生总人数乘以“综合素质”等级为A的学生所占的比即可求得

18、结果【题目详解】A,B,C,D,E五个等级在统计图中的高之比为2:3:3:1:1,该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为80000=16000,故答案为16000.【答案点睛】本题考查了条形统计图的应用,读懂统计图,从统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据16、或x=-1【答案解析】由点A的坐标及AB的长度可得出点B的坐标,由抛物线的对称性可求出抛物线的对称轴【题目详解】点A的坐标为(-2,0),线段AB的长为8,点B的坐标为(1,0)或(-10,0)抛物线y=ax2+bx+c(a0)与x轴交于A、B两点,抛物线的对称轴为直线x

19、=2或x=-1故答案为x=2或x=-1【答案点睛】本题考查了抛物线与x轴的交点以及二次函数的性质,由抛物线与x轴的交点坐标找出抛物线的对称轴是解题的关键17、2【答案解析】根据平方根的定义进行计算即可【题目详解】解:i2=1,(1+i)(1i)=1i2=2,(1+i)(1i)的平方根是,故答案为【答案点睛】本题考查平方根以及实数的运算,解题关键掌握平方根的定义三、解答题(共7小题,满分69分)18、(1)(2)1(3)【答案解析】(1)由抛物线与x轴只有一个交点,可知=0;(2)由抛物线与x轴有两个交点且AB=2,可知A、B坐标,代入解析式,可得k值;(3)通过解析式求出对称轴,与y轴交点,并

20、根据系数的关系得出判断【题目详解】(1)二次函数ykx24kx+3与x轴只有一个公共点,关于x的方程kx24kx+30有两个相等的实数根,(4k)243k16k212k0,解得:k10,k2,k0,k;(2)AB2,抛物线对称轴为x2,A、B点坐标为(1,0),(3,0),将(1,0)代入解析式,可得k1,(3)当x0时,y3,二次函数图象与y轴的交点为(0,3),正确;抛物线的对称轴为x2,抛物线的对称轴不变,正确;二次函数ykx24kx+3k(x24x)+3,将其看成y关于k的一次函数,令k的系数为0,即x24x0,解得:x10,x24,抛物线一定经过两个定点(0,3)和(4,3),正确综

21、上可知:正确的结论有【答案点睛】本题考查了二次函数的性质,与x、y轴的交点问题,对称轴问题,以及系数与图象的关系问题,是一道很好的综合问题19、(1)证明见解析;(2)四边形ADCN是矩形,理由见解析.【答案解析】(1)根据平行得出DAMNCM,根据ASA推出AMDCMN,得出ADCN,推出四边形ADCN是平行四边形即可;(2)根据AMD2MCD,AMDMCDMDC求出MCDMDC,推出MDMC,求出MDMNMAMC,推出ACDN,根据矩形的判定得出即可【题目详解】证明:(1)CNAB,DAMNCM,在AMD和CMN中,DAMNCMMAMCDMANMC,AMDCMN(ASA),ADCN,又AD

22、CN,四边形ADCN是平行四边形,CDAN;(2)解:四边形ADCN是矩形,理由如下:AMD2MCD,AMDMCDMDC,MCDMDC,MDMC,由(1)知四边形ADCN是平行四边形,MDMNMAMC,ACDN,四边形ADCN是矩形【答案点睛】本题考查了全等三角形的性质和判定,平行四边形的判定和性质,矩形的判定的应用,能综合运用性质进行推理是解此题的关键,综合性比较强,难度适中20、(1)证明见解析;(2)1【答案解析】(1)根据正方形的性质得到ABBC,ACBN90,1290,根据垂线和三角形内角和定理得到2390,推出13,根据ASA推出ABEBCN;(2)tanABEAEAB【题目详解】

23、(1)证明:四边形ABCD为正方形AB=BC,A=CBN=90,1+2=90CMBE,2+3=901=3在ABE和BCN中AABEBCN(ASA);(2)N为AB中点,BN=12又ABEBCN,AE=BN=12在RtABE中,tanABEAEAB【答案点睛】本题主要考查了正方形的性质、三角形的内角和定理、垂线、全等三角形的性质和判定以及锐角三角函数等知识点的掌握和理解,证出ABEBCN是解此题的关键.21、(1)作图见解析;点B的坐标为:(2,5);(2)作图见解析;(3) 【答案解析】分析:(1)直接利用已知点位置得出B点坐标即可; (2)直接利用位似图形的性质得出对应点位置进而得出答案; (3)直接利用位似图形的性质得出对应点交点即可位似中心,再利用勾股定理得出四边形ABCP的周长详解:(1)如图所示:点B的坐标为:(2,5); 故答案为(2,5); (2)如图所示:AB2C2,即为所求; (3)如图所示:P点即为所求,P点坐标为:(2,1),四边形ABCP的周长为:+=4+2+2+2=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论