![陕西省长安一中、高新一中、交大附中2023学年高三一诊考试数学试卷(含解析)_第1页](http://file4.renrendoc.com/view/3003d3ee6af52f8e8a97b090f8a2eb70/3003d3ee6af52f8e8a97b090f8a2eb701.gif)
![陕西省长安一中、高新一中、交大附中2023学年高三一诊考试数学试卷(含解析)_第2页](http://file4.renrendoc.com/view/3003d3ee6af52f8e8a97b090f8a2eb70/3003d3ee6af52f8e8a97b090f8a2eb702.gif)
![陕西省长安一中、高新一中、交大附中2023学年高三一诊考试数学试卷(含解析)_第3页](http://file4.renrendoc.com/view/3003d3ee6af52f8e8a97b090f8a2eb70/3003d3ee6af52f8e8a97b090f8a2eb703.gif)
![陕西省长安一中、高新一中、交大附中2023学年高三一诊考试数学试卷(含解析)_第4页](http://file4.renrendoc.com/view/3003d3ee6af52f8e8a97b090f8a2eb70/3003d3ee6af52f8e8a97b090f8a2eb704.gif)
![陕西省长安一中、高新一中、交大附中2023学年高三一诊考试数学试卷(含解析)_第5页](http://file4.renrendoc.com/view/3003d3ee6af52f8e8a97b090f8a2eb70/3003d3ee6af52f8e8a97b090f8a2eb705.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设等差数列的前项和为,若,则( )A10B9C8D72已知函数(表示不超过x的最大整数),若有且仅有3个零点,则实数a
2、的取值范围是()ABCD3设集合Ay|y2x1,xR,Bx|2x3,xZ,则AB( )A(1,3B1,3C0,1,2,3D1,0,1,2,34设函数,当时,则( )ABC1D5若变量,满足,则的最大值为( )A3B2CD106如图,在四边形中,则的长度为( )ABCD7一个几何体的三视图及尺寸如下图所示,其中正视图是直角三角形,侧视图是半圆,俯视图是等腰三角形,该几何体的表面积是 ( ) ABCD8下图是民航部门统计的某年春运期间,六个城市售出的往返机票的平均价格(单位元),以及相比于上一年同期价格变化幅度的数据统计图,以下叙述不正确的是( )A深圳的变化幅度最小,北京的平均价格最高B天津的往
3、返机票平均价格变化最大C上海和广州的往返机票平均价格基本相当D相比于上一年同期,其中四个城市的往返机票平均价格在增加9要得到函数的图像,只需把函数的图像( )A向左平移个单位B向左平移个单位C向右平移个单位D向右平移个单位10已知函数且的图象恒过定点,则函数图象以点为对称中心的充要条件是( )ABCD11在四面体中,为正三角形,边长为6,则四面体的体积为( )ABC24D12框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入,则图中空白框中应填入( )A,BC,D,二、
4、填空题:本题共4小题,每小题5分,共20分。13已知函数,在区间上随机取一个数,则使得0的概率为 14已知向量满足,且,则 _15如图,已知扇形的半径为1,面积为,则_.16如图,在体积为V的圆柱中,以线段上的点O为项点,上下底面为底面的两个圆锥的体积分别为,则的值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)为了加强环保知识的宣传,某学校组织了垃圾分类知识竟赛活动.活动设置了四个箱子,分别写有“厨余垃圾”、“有害垃圾”、“可回收物”、“其它垃圾”;另有卡片若干张,每张卡片上写有一种垃圾的名称.每位参赛选手从所有卡片中随机抽取张,按照自己的判断将每张卡片放入
5、对应的箱子中.按规则,每正确投放一张卡片得分,投放错误得分.比如将写有“废电池”的卡片放入写有“有害垃圾”的箱子,得分,放入其它箱子,得分.从所有参赛选手中随机抽取人,将他们的得分按照、分组,绘成频率分布直方图如图:(1)分别求出所抽取的人中得分落在组和内的人数;(2)从所抽取的人中得分落在组的选手中随机选取名选手,以表示这名选手中得分不超过分的人数,求的分布列和数学期望.18(12分)设(1)证明:当时,;(2)当时,求整数的最大值.(参考数据:,)19(12分)如图,在四棱锥中,底面是边长为2的菱形,.(1)证明:平面平面ABCD;(2)设H在AC上,若,求PH与平面PBC所成角的正弦值.
6、20(12分)在直角坐标系中,曲线的参数方程为(为参数),坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的普通方程和曲线的直角坐标方程;(2)若曲线、交于、两点,是曲线上的动点,求面积的最大值.21(12分)在中,内角的边长分别为,且(1)若,求的值;(2)若,且的面积,求和的值22(10分)若,且(1)求的最小值;(2)是否存在,使得?并说明理由.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【答案解析】根据题意,解得,得到答案.【题目详解】,解得,故.故选
7、:.【答案点睛】本题考查了等差数列的求和,意在考查学生的计算能力.2、A【答案解析】根据x的定义先作出函数f(x)的图象,利用函数与方程的关系转化为f(x)与g(x)=ax有三个不同的交点,利用数形结合进行求解即可【题目详解】当时,当时,当时,当时,若有且仅有3个零点,则等价为有且仅有3个根,即与有三个不同的交点,作出函数和的图象如图,当a=1时,与有无数多个交点,当直线经过点时,即,时,与有两个交点,当直线经过点时,即时,与有三个交点,要使与有三个不同的交点,则直线处在过和之间,即,故选:A【答案点睛】利用函数零点的情况求参数值或取值范围的方法(1)直接法:直接根据题设条件构建关于参数的不等
8、式,再通过解不等式确定参数的范围; (2)分离参数法:先将参数分离,转化成求函数的值域(最值)问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.3、C【答案解析】先求集合A,再用列举法表示出集合B,再根据交集的定义求解即可【题目详解】解:集合Ay|y2x1,xRy|y1,Bx|2x3,xZ2,1,0,1,2,3,AB0,1,2,3,故选:C【答案点睛】本题主要考查集合的交集运算,属于基础题4、A【答案解析】由降幂公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质求得参数值【题目详解】,时,由题意,故选:A【答案点睛
9、】本题考查二倍角公式,考查两角和的正弦公式,考查正弦函数性质,掌握正弦函数性质是解题关键5、D【答案解析】画出约束条件的可行域,利用目标函数的几何意义求解最大值即可【题目详解】解:画出满足条件的平面区域,如图示:如图点坐标分别为,目标函数的几何意义为,可行域内点与坐标原点的距离的平方,由图可知到原点的距离最大,故.故选:D【答案点睛】本题考查了简单的线性规划问题,考查数形结合思想,属于中档题6、D【答案解析】设,在中,由余弦定理得,从而求得,再由由正弦定理得,求得,然后在中,用余弦定理求解.【题目详解】设,在中,由余弦定理得,则,从而,由正弦定理得,即,从而,在中,由余弦定理得:,则.故选:D
10、【答案点睛】本题主要考查正弦定理和余弦定理的应用,还考查了数形结合的思想和运算求解的能力,属于中档题.7、D【答案解析】由三视图可知该几何体的直观图是轴截面在水平面上的半个圆锥,表面积为,故选D8、D【答案解析】根据条形图可折线图所包含的数据对选项逐一分析,由此得出叙述不正确的选项.【题目详解】对于A选项,根据折线图可知深圳的变化幅度最小,根据条形图可知北京的平均价格最高,所以A选项叙述正确.对于B选项,根据折线图可知天津的往返机票平均价格变化最大,所以B选项叙述正确.对于C选项,根据条形图可知上海和广州的往返机票平均价格基本相当,所以C选项叙述正确.对于D选项,根据折线图可知相比于上一年同期
11、,除了深圳外,另外五个城市的往返机票平均价格在增加,故D选项叙述错误.故选:D【答案点睛】本小题主要考查根据条形图和折线图进行数据分析,属于基础题.9、A【答案解析】运用辅助角公式将两个函数公式进行变形得以及,按四个选项分别对变形,整理后与对比,从而可选出正确答案.【题目详解】解:.对于A:可得.故选:A.【答案点睛】本题考查了三角函数图像平移变换,考查了辅助角公式.本题的易错点有两个,一个是混淆了已知函数和目标函数;二是在平移时,忘记乘了自变量前的系数.10、A【答案解析】由题可得出的坐标为,再利用点对称的性质,即可求出和.【题目详解】根据题意,所以点的坐标为,又 ,所以.故选:A.【答案点
12、睛】本题考查指数函数过定点问题和函数对称性的应用,属于基础题.11、A【答案解析】推导出,分别取的中点,连结,则,推导出,从而,进而四面体的体积为,由此能求出结果.【题目详解】解: 在四面体中,为等边三角形,边长为6,分别取的中点,连结,则,且,平面,平面,四面体的体积为:.故答案为:.【答案点睛】本题考查四面体体积的求法,考查空间中线线,线面,面面间的位置关系等基础知识,考查运算求解能力.12、A【答案解析】依题意问题是,然后按直到型验证即可.【题目详解】根据题意为了计算7个数的方差,即输出的,观察程序框图可知,应填入,故选:A.【答案点睛】本题考查算法与程序框图,考查推理论证能力以及转化与
13、化归思想,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】试题分析:可以得出,所以在区间上使的范围为,所以使得0的概率为考点:本小题主要考查与长度有关的几何概型的概率计算.点评:几何概型适用于解决一切均匀分布的问题,包括“长度”、“角度”、“面积”、“体积”等,但要注意求概率时做比的上下“测度”要一致.14、【答案解析】由数量积的运算律求得,再由数量积的定义可得结论【题目详解】由题意,即,故答案为:【答案点睛】本题考查求向量的夹角,掌握数量积的定义与运算律是解题关键15、【答案解析】根据题意,利用扇形面积公式求出圆心角,再根据等腰三角形性质求出,利用向量的数量积公
14、式求出.【题目详解】设角, 则,所以在等腰三角形中,则.故答案为:.【答案点睛】本题考查扇形的面积公式和向量的数量积公式,属于基础题.16、【答案解析】根据圆柱的体积为,以及圆锥的体积公式,计算即得.【题目详解】由题得,得.故答案为:【答案点睛】本题主要考查圆锥体的体积,是基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)所抽取的人中得分落在组和内的人数分别为人、人;(2)分布列见解析,.【答案解析】(1)将分别乘以区间、对应的矩形面积可得出结果;(2)由题可知,随机变量的可能取值为、,利用超几何分布概率公式计算出随机变量在不同取值下的概率,可得出随机变量的分布
15、列,并由此计算出随机变量的数学期望值.【题目详解】(1)由题意知,所抽取的人中得分落在组的人数有(人),得分落在组的人数有(人).因此,所抽取的人中得分落在组的人数有人,得分落在组的人数有人;(2)由题意可知,随机变量的所有可能取值为、,所以,随机变量的分布列为:所以,随机变量的期望为.【答案点睛】本题考查利用频率分布直方图计算频数,同时也考查了离散型随机变量分布列与数学期望的求解,考查计算能力,属于基础题.18、(1)证明见解析;(2).【答案解析】(1)将代入函数解析式可得,构造函数,求得并令,由导函数符号判断函数单调性并求得最大值,由即可证明恒成立,即不等式得证.(2)对函数求导,变形后
16、讨论当时的函数单调情况:当时,可知满足题意;将不等式化简后构造函数,利用导函数求得极值点与函数的单调性,从而求得最小值为,分别依次代入检验的符号,即可确定整数的最大值;当时不满足题意,因为求整数的最大值,所以时无需再讨论.【题目详解】(1)证明:当时代入可得,令,则,令解得,当时,所以在单调递增,当时,所以在单调递减,所以,则,即成立.(2)函数则,若时,当时,则在时单调递减,所以,即当时成立;所以此时需满足的整数解即可,将不等式化简可得,令 则令解得,当时,即在内单调递减,当时,即在内单调递增,所以当时取得最小值,则,所以此时满足的整数 的最大值为;当时,在时,此时,与题意矛盾,所以不成立.
17、因为求整数的最大值,所以时无需再讨论,综上所述,当时,整数的最大值为.【答案点睛】本题考查了导数在证明不等式中的应用,导数与函数单调性、极值、最值的关系和应用,构造函数法求最值,并判断函数值法符号,综合性强,属于难题.19、(1)见解析;(2)【答案解析】(1)记,连结,推导出,平面,由此能证明平面平面;(2)推导出,平面,连结,由题意得为的重心,从而平面平面,进而是与平面所成角,由此能求出与平面所成角的正弦值【题目详解】(1)证明:记,连结,中,平面,平面,平面平面(2)中,平面,连结,由题意得为的重心,平面平面平面,在平面的射影落在上,是与平面所成角,中,与平面所成角的正弦值为【答案点睛】
18、本题考查面面垂直的证明,考查线面角的正弦值的求法,考查线线、线面、面面的位置关系等基础知识,考查运算求解能力,是中档题20、(1),;(2).【答案解析】(1)在曲线的参数方程中消去参数,可得出曲线的普通方程,将曲线的极坐标方程变形为,进而可得出曲线的直角坐标方程;(2)求出点到直线的最大距离,以及直线截圆所得弦长,利用三角形的面积公式可求得面积的最大值.【题目详解】(1)由曲线的参数方程得,.所以,曲线的普通方程为,将曲线的极坐标方程变形为,所以,曲线的直角坐标方程为;(2)曲线是圆心为,半径为为圆,圆心到直线的距离为,所以,点到直线的最大距离为,因此,的面积为最大值为.【答案点睛】本题考查曲线的参数方程、极坐标方程与普通方程之间的相互转换,同时也考查了直线截圆所形成的三角形面积最值的计算,考查计算能力,属于中等题.21、(1);(2).【答案解析】(1)先由余弦定理求得,再由正弦定理计算即可得到所求值;(2)运用二倍角的余弦公式和两角和的正弦公式,化简可得sinA+sinB=5sinC,运用正弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年鹤岗货运考试题目
- 2025年莱芜货运资格证安检考试题
- 小学二年级数学上口算纸
- 2025年济宁道路客货运输从业资格证b2考试题库
- 2025年焦作道路运输从业人员从业资格考试
- 电焊工入职合同(2篇)
- 《北魏政治和北方民族大交融》听课评课记录2(新部编人教版七年级上册历史)
- 2024-2025学年高中英语Module6TheInternetandTelecommunicationsSectionⅤWriting-正反观点对比类议论文教案含解析外研版必修1
- 企业年终工作总结报告
- 公司人事部门年终工作总结
- 北师大版小学三年级数学下册全册教案
- DCMM练习题练习试题
- 《工业化建筑施工阶段碳排放计算标准》
- GB/T 33761-2024绿色产品评价通则
- 地下停车场充电桩技术方案建议书
- 幼儿园设施设备安全教育
- 废旧保温棉处置合同范例
- 《人工智能简述》课件
- 《轨道交通工程盾构施工技术》 课件 项目5 盾构隧道防水施工
- 2024年数据编织价值评估指南白皮书-Aloudata
- 四川省算力基础设施高质量发展行动方案(2024-2027年)
评论
0/150
提交评论