版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、PAGE29二次函数yabc的图象和性质第三课时卢文一、教学目标(一)学习目标学会运用待定系数法求二次函数解析式,熟练应用已知图象上三个点能确定二次函数解析式掌握二次函数解析式的三种形式,并会选用不同的形式,用待定系数法求二次函数的解析式(二)学习重点通过对用待定系数法求二次函数解析式的探究,掌握求解析式的方法(三)学习难点能灵活根据条件恰当地选择解析式,体会二次函数解析式之间的转化在实际运用中确立二次函数表达式二、教学设计(一)课前设计1预习任务(1)二次函数表达式常见的三种形式是:一般式:;顶点式:;交点式:求二次函数表达式的常用方法是待定系数法预习自测(1)若抛物线经过(0,1),(-1
2、,0),(1,0)三点,则此抛物线的解析式为()=1=-1=-1=-1【知识点】待定系数法求解析式,解方程组【解题过程】解:设所求函数的解析式为y=a2bc,把(0,1),(-1,0),(1,0)分别代入,得:解得所求的函数的解析式为故选C【思路点拨】已知三点,用待定系数法求抛物线的解析式【答案】C(2)某抛物线的顶点坐标为(1,-2),且经过(2,1),则抛物线的解析式为()=32-6-5By=32-61Cy=3261Dy=3265【知识点】待定系数法求解析式,解方程组【解题过程】解:抛物线的顶点坐标为(1,-2),且经过(2,1),设抛物线的解析式为y=a(-1)2-2,把(2,1)代入得
3、:1=a(2-1)2-2,解得:a=3,y=3(-1)2-2=32-61,选B【思路点拨】已知顶点,用顶点式求抛物线的解析式。设抛物线的解析式为y=a(-12-2,把(2,1)代入得出1=a(2-1)2-2,求出a【答案】B(3)已知抛物线经过点A(0,6),且与轴两交点的横坐标分别为-3,2,则此抛物线的解析式为()=-26By=-2-6Cy=-256Dy=-25【知识点】待定系数法求解析式【解题过程】解:抛物线经过点A(0,6),且与轴两交点的横坐标分别为-3,2,设抛物线的解析式为y=a(3)(-2),把(0,6)代入得:a(03)(0-2)=6,解得:a=-1,y=-(3)(-2),即
4、y=-2-6,故选B【思路点拨】已知图象与轴交点的坐标,用交点式求抛物线的解析式。【答案】选B(4)二次函数的图象如图所示,则它的解析式正确的是=-2=-1=-24【知识点】待定系数法求解析式【数学思想】数形结合【解题过程】解:根据图象得:抛物线的顶点坐标为1,2,设抛物线的解析式为y=a-12,将2,0代入解析式,得0=a2,解得a=-2,则抛物线解析式为y=-2-12=-24故选D【思路点拨】由图象与轴交点的横坐标,可求得对称轴方程,再用顶点式求抛物线的解析式。二课堂设计1知识回顾(1)二次函数表达式常见的三种形式是:一般式:;顶点式:;交点式:(2)抛物线的顶点坐标是(h,)2问题探究探
5、究一利用一般式求二次函数解析式活动回顾旧知,引出新知问题1:一次函数y=b0有几个待定系数通常需要已知几个点的坐标求出它的解析式生答:2个问题2:求一次函数解析式的方法是什么它的一般步骤是什么生答:待定系数法:1设:(表达式);2代:(坐标代入);3解:方程(组);4还原:(写解析式)问题3:二次函数(a0)有几个待定系数通常需要已知几个点的坐标求出它的解析式生答:3个【设计意图】复习待定系数法求一次函数解析式的方法,引出同样可用待定系数法求二次函数(a0)的解析式。活动合作探究,已知抛物线上三个点确定二次函数解析式问题:已知抛物线上三个点如何确定二次函数解析式已知二次函数图象经过点(-3,0
6、),(-1,0),(0,-3),试求出这个二次函数的解析式解析:设一般式ya2bc,再把已知三点坐标代入得到关于a、b、c的方程组,然后解方程组求出a、b、c即可解:设这个二次函数的表达式是y=abc,把(-3,0),(-1,0),(0,-3)代入y=abc得解得所求的二次函数的表达式是y=-4-3归纳总结:一般式法求二次函数解析式的方法:这种已知三点求二次函数解析式的方法叫做一般式法其步骤是:设函数解析式为y=abc;代入后得到一个三元一次方程组;解方程组得到a,b,c的值;把待定系数用数字换掉,写出函数解析式若题目给出了二次函数图象上三个点的坐标,则可采用一般式求解【设计意图】让学生知道已
7、知抛物线上三个点确定二次函数解析式的方法探究二利用顶点式求二次函数解析式活动合作探究,已知抛物线的顶点坐标确定二次函数解析式问题:已知顶点坐标及图象上另一点坐标,能否求出二次函数解析式如何进行已知抛物线的顶点坐标为M1,2,且经过点N2,3,求此二次函数的解析式解析:因为抛物线的顶点坐标为M1,2,所以设此二次函数的解析式为ya122,把点N2,3代入解析式解答解:已知抛物线的顶点坐标为M1,2,设此二次函数的解析式为ya122,把点N2,3代入解析式,得a23,即a5,此函数的解析式为y5122归纳总结顶点式法求二次函数解析式的方法:这种知道抛物线的顶点坐标,求解析式的方法叫做顶点式法其步骤
8、是:设函数解析式是y=a-h2;先代入顶点坐标,得到关于a的一元一次方程;将另一点的坐标代入原方程求出a值;a用数值换掉,写出函数解析式若题目给出了二次函数的顶点坐标,则采用顶点式求解简单【设计意图】让学生知道已知抛物线的顶点坐标确定二次函数解析式的方法探究三利用交点式求二次函数解析式活动已知抛物线与轴两交点坐标或一交点坐标和对称轴如何确定二次函数解析式已知抛物线经过两点A1,0,B0,3,且对称轴是直线2,求此二次函数的解析式解析:可设交点式ya13,然后把B点坐标代入求出a即可;解:对称轴是直线2,抛物线与轴另一个交点坐标为3,0设抛物线解析式为ya13,把B0,3代入得a133,解得a1
9、,抛物线解析式为y13243归纳总结:交点式法求二次函数解析式的方法:这种知道抛物线与轴的交点坐标,求解析式的方法叫做交点式法其步骤是:设函数解析式是y=a-;先把两交点的横坐标,代入到解析式中,得到关于a的一元一次方程;将另一点的坐标代入原方程求出a值;a用数值换掉,写出函数解析式已知抛物线与轴两交点或一交点和对称轴,则采用交点式求解简单【设计意图】让学生知道已知抛物线与轴两交点坐标或一交点坐标和对称轴,确定二次函数解析式的方法探究四用待定系数法求二次函数解析式的训练活动基础型例题轴交点的纵坐标为1,且经过点2,5和-2,13,求这个二次函数的表达式【知识点】用待定系数法求二次函数解析式【解
10、题过程】解:因为二次函数图象与y轴交点的纵坐标为1,所以c=1设二次函数的表达式为y=ab1,将点2,5和-2,13代入y=ab1,得所以所求二次函数的表达式为y=2-21【思路点拨】已知二次函数图象经过任意三点,可直接设表达式为一般式,代入可得三元一次方程组,解之即可求出待定系数【答案】y=2-21练习:已知二次函数的图象经过点A3,0,B2,-3,C0,-3,求函数的表达式和对称轴【知识点】用待定系数法求二次函数解析式【解题过程】解:设函数表达式为y=a2bc,因为二次函数的图象经过点A3,0,B2,-3,C0,-3,则有解得函数的表达式为y=2-2-3,其对称轴为直线=1【思路点拨】已知
11、图象上三点,用一般式求解【答案】y=2-2-3,对称轴为直线=1例2已知抛物线的顶点是(1,2)且过点(2,3,求这个二次函数的表达式【知识点】用待定系数法求二次函数解析式【解题过程】解:已知顶点坐标设顶点式y=a-h顶点是(1,2)设y=a-12,又过点(2,3)a2-12=3,a=1y=-12,即y=-23【思路点拨】此题只告诉了两个点的坐标,但其中一点为顶点坐标,所以表达式可设顶点式:y=a-h2,即可得到一个关于字母a的一元一次方程,的符号【答案】y=-23练习:已知一个二次函数的图象的顶点是-1,2,且过点(0,),求这个二次函数的表达式及与轴交点的坐标【知识点】用待定系数法求二次函
12、数解析式【解题过程】解:已知顶点坐标设顶点式y=a-h顶点是(-1,2)设y=a12,又过点(0,),a012=,a=-y=-12,即y=-2-令y=0,即-2-=0,解得与轴交点坐标为-3,0、1,0【思路点拨】已知抛物线的顶点和图象上另外一点的坐标,采用顶点式求解关于其图象与的交点,即当y=0时,解关于的一元二次方程【答案】y=-2-,与轴交点坐标为-3,0、1,0【设计意图】让学生熟悉用待定系数法求二次函数解析式。活动2提升型例题例3已知抛物线经过三点(-3,0),(-1,0),(0,-3),试求出这个二次函数的表达式【知识点】用待定系数法求二次函数解析式【解题过程】解:(-3,0)(-
13、1,0)是抛物线y=abc与轴的交点所以可设这个二次函数的表达式是y=a-其中、为交点的横坐标)因此得y=a31再把点(0,-3)代入上式得a0301=-3,解得a=-1,所求的二次函数的表达式是y=-31,即y=-4-3【思路点拨】因为已知点为抛物线与轴的交点,表达式可设为交点式,再把第三点代入可得一元一次方程,较一般式所得的三元一次方程组简单而顶点可根据顶点公式求出【答案】y=-4-3练习:已知一抛物线经过三点A-2,0、B1,0、C2,8试求该抛物线的表达式及顶点坐标【知识点】用待定系数法求二次函数解析式【解题过程】解:A-2,0、B1,0是抛物线与轴两交点,设表达式为y=a2-1,把C
14、2,8代入上式,则有a222-1=8,a=2此函数的表达式为y=222-4,其顶点坐标为(-,-)【思路点拨】已知抛物线与轴两交点,采用交点式求解【答案】y=222-4,其顶点坐标为(-,-)例4如图,已知二次函数的图象过A、C、B三点,点A的坐标为(1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC(1)求点C的坐标;(2)求二次函数的解析式,并化成一般形式【知识点】待定系数法求二次函数解析式【数学思想】数形结合【解题过程】解:(1)点A的坐标为(1,0),点B的坐标为(4,0),OC=AB=5,点C的坐标为(0,5);(2)设二次函数解析式为:y=a2b5,把A(1,0)、
15、B(4,0)代入原函数解析式得出:a=,b=;所以这个二次函数的解析式为:y=25【思路点拨】(1)根据题目所给的信息可以知道OC=AB=5,点C在y轴上可以写出点C的坐标;(2)二次函数图象经过点A、B、C;这三个点的坐标已知,根据三点法确定这个二次函数解析式【答案】(1)C(0,5);(2)y=25练习:已知在直角坐标平面内,抛物线y=2b6经过轴上两点A,B,点B的坐标为(3,0),与y轴相交于点C(1)求抛物线的表达式;(2)求ABC的面积【知识点】待定系数法求二次函数解析式,求三角形面积【数学思想】数形结合【解题过程】解:(1)把点B的坐标(3,0)代入抛物线y=2b6得0=93b6
16、,解得b=5,所以抛物线的表达式y=256;(2)抛物线的表达式y=256;A(2,0),B(3,0),C(0,6),SABC=16=3【思路点拨】(1)把点B的坐标(3,0)代入抛物线y=2b6,即可得出抛物线的表达式y=256;(2)先求出A(2,0),B(3,0),C(0,6),再利用三角形面积公式求解【答案】(1)y=256;(2)SABC=3【设计意图】让学生掌握用待定系数法求解析式活动3探究型例题0,1,B1,2,C2,1,你能确定这个二次函数的表达式吗你有几种方法【知识点】二次函数的解析式的求法的综合运用【数学思想】分类讨论【解题过程】解法1:二次函数图象与y轴的交点的纵坐标为1
17、,c=1设二次函数的表达式为y=ab1,将点1,2和2,1分别代入y=ab1,二次函数的表达式为y=-21解法2:由A0,1,B1,2,C2,1三个点的特征以及二次函数图象的对称性,可得点B1,2是函数图象的顶点坐标二次函数的表达式为y=a-12,将点0,1代入y=a-12,得a=-1二次函数的表达式为y=-12,即y=-21解法3:设二次函数的表达式为y=abc,将点0,1,1,2和2,1分别代入y=abc,得二次函数的表达式为y=-21【思路点拨】分别找出用三种方法求解析式的条件,分别求解。【答案】y=-21;三种。练习:如图所示,这是一名学生推铅球时,铅球行进高度ym与水平距离m之间的图
18、象,请求出其表达式。【知识点】待定系数法求二次函数解析式,二次函数图象性质【数学思想】数形结合【解题过程】解:4,3是抛物线的顶点坐标,设二次函数表达式为y=a-43,把点10,0代入y=a-423,解得a=,因此铅球行进高度ym与水平距离m之间的函数表达式为y=-43即【思路点拨】观察图象知,已知抛物线的顶点和另一点坐标,用顶点式求解。【答案】例6如图,已知二次函数的图象经过点A和点B(1)求该二次函数的表达式;(2)写出该抛物线的对称轴及顶点坐标;(3)点,m)与点Q均在该函数图象上(其中m0),且这两点关于抛物线的对称轴对称,求m的值及点Q到轴的距离【知识点】待定系数法求二次函数解析式,
19、二次函数图象性质【数学思想】数形结合【解题过程】解:(1)将=-1,y=-1;=3,y=-9分别代入解得二次函数的表达式为(2)对称轴为=2;顶点坐标为(2,-10)(3)将(m,m)代入,得,解得m0,不合题意,舍去m=6点,m)代入抛物线解析式求出m值,再求Q点坐标。【答案】(1);(2)对称轴为=2;顶点(2,-10);(3)m=6,点Q到轴的距离为6练习:如图,抛物线y=a22c经过点A(0,3),B(1,0),请解答下列问题:(1)求抛物线的解析式;(2)抛物线的顶点为点D,对称轴与轴交于点E,连接BD,求BD的长【知识点】待定系数法求二次函数解析式;二次函数的性质【数学思想】数形结
20、合【解题过程】解:(1)抛物线y=a22c经过点A(0,3),B(1,0),将A与B坐标代入得:,解得:,则抛物线解析式为y=223;(2)点D为抛物线顶点,由顶点坐标(,)得,D(1,4),对称轴与轴交于点E,DE=4,OE=1,B(1,0),BO=1,BE=2,在RtBED中,根据勾股定理得:BD=【思路点拨】(1)将A与B代入抛物线解析式求出a与c的值,即可确定出抛物线解析式;(2)利用顶点坐标公式表示出D点坐标,进而确定出E点坐标,得到DE与OE的长,根据B点坐标求出BO的长,进而求出BE的长,在直角三角形BED中,利用勾股定理求出BD的长【答案】(1)y=223;(2)BD=【设计意
21、图】在实际运用中确立二次函数解析式,并用二次函数解析式解决其它问题3课堂总结知识梳理待定系数法求解析式的一般步骤:设:(表达式);代:(坐标代入);解:方程(组);还原:(写解析式)待定系数法求二次函数解析式的一般方法:已知条件所选方法已知三点坐标用一般式法:已知顶点坐标或用顶点法:对称轴或最值已知抛物线与轴用交点法:的两个交点(为交点的横坐标)重难点归纳在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴或最大(小)值,常设其解析式为顶点式
22、来求解;当已知抛物线与轴有两个交点时,可选择设其解析式为交点式来求解(三)课后作业基础型自主突破=abc经过点-1,10和2,7,且3a2b=0,则该抛物线的解析式为_【知识点】用待定系数法求二次函数解析式【解题过程】解:根据题意,得解方程组,得所以该抛物线的解析式为y=2-3=2-35【思路点拨】用待定系数法,列方程组求解。【答案】y=2-352已知二次函数的图象如图所示,则这个二次函数的表达式为_【知识点】用待定系数法求二次函数解析式【数学思想】数形结合【解题过程】解:抛物线过0,-3,c=-3,设二次函数的表达式为y=ab-3,把-1,0,3,0分别代入上式,得解这个方程组,得这个二次函
23、数的表达式为y=-2-3【思路点拨】用待定系数法,列方程组求解。【答案】y=-2-3=bc的图象经过点3,0和4,0,则这个二次函数的表达式是_【知识点】用待定系数法求二次函数解析式【解题过程】解:设二次函数的解析式为y=a-3-4,而a=1,所以二次函数的解析式y=-3-4=-7=-712【思路点拨】已知抛物线与轴两交点,采用交点式求解【答案】y=-7124已知二次函数的图象经过点(-1,-5),(0,-4)和(1,1),则这二次函数的表达式为()=-63=-2=23-4【知识点】用待定系数法求二次函数解析式【解题过程】解:设函数表达式为y=abc,把(-1,-5),(0,-4)和(1,1)
24、分别代入上式,得:解得函数的表达式为y=2【思路点拨】已知图象上三点,用一般式求解【答案】D5已知某二次函数的图象如图所示,则这个二次函数的解析式为()=-3-1=3-1=-31=313【知识点】用待定系数法求二次函数解析式【数学思想】数形结合【解题过程】解:抛物线的顶点为(1,3)设抛物线的顶点式为y=a-13,把(0,0)代入,得a=-3,该二次函数的解析式为y=-3-13,故选A【思路点拨】已知抛物线的顶点和图象上另外一点的坐标,采用顶点式求解【答案】A(2,0)和B(-1,0),且与y轴交于点C,若OC=2则这条抛物线的解析式是()=-2=2或y=2=-2=-2或y=-2【知识点】用待
25、定系数法求二次函数解析式【数学思想】数形结合【解题过程】解:A(2,0)和B(-1,0)是抛物线与轴两交点,设表达式为y=a-21,OC=2C点坐标为(0,2)或(0,-2)当C点坐标为(0,2)时,则有a0-201=2,a=-1抛物线的解析式为y=-21,即y=-2当C点坐标为(0,-2)时,则有a0-201=-2,a=1抛物线的解析式为y=-21,即y=-2故选D【思路点拨】已知抛物线与轴两交点,采用交点式求解注意分类讨论。【答案】D能力型师生共研7若二次函数的与的部分对应值如下表:765432y27133353则当1时,的值为()A、5B、3C、13D、27【知识点】待定系数法求二次函数
26、解析式,二次函数性质。【解题过程】解法一:由表可知,抛物线的对称轴为3,顶点为(3,5),设二次函数的解析式为(3)25,把(2,3)代入得,2二次函数的解析式为2(3)25当1时,27故选D解法二:由表可知,抛物线的对称轴为3,顶点为(3,5),由抛物线的对称性知,=1时y的值与=7时y的值相等,=7时y的值为27,=1时y的值也为27,故选D【思路点拨】此题既可用待定系数法求,也可用抛物线的对称性求。【答案】D8某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,在柱子上离地面1米的B处安装一个喷头向外喷水李冰同学建立了如图所示的直角坐标系,得到该抛物线还经过2,1,两点,请求出
27、该喷泉喷出的最远距离,即地面点A距离点B所在的柱子的距离【知识点】待定系数法求二次函数解析式,二次函数性质。【数学思想】数形结合【解题过程】解:由题意,B(0,1),图象还过2,1,两点,设抛物线解析式为ya2bc,则有得:解得抛物线解析式为:由,解得OA=3,喷泉喷出的最远距离为3米【思路点拨】先用待定系数法求出二次函数解析式,再令y=0,解一元二次方程求出。【答案】3米探究型多维突破9如图,抛物线y2bc过点A4,3,与y轴交于点B,对称轴是3,请解答下列问题:1求抛物线的解析式;2若和轴平行的直线与抛物线交于C,D两点,点C在对称轴左侧,且CD8,求BCD的面积【知识点】待定系数法求二次函数解析式,二次函数性质,三角形面积。【数学思想】数形结合【解题过程】解:1把点A4,3代入y2bc得164bc3,c4b19对称轴是3,eqfb,23,b6,c5,抛物线的解析式是y265;CD轴,点C与点D关于3对称点C在对称轴左侧,且CD8,点C的横坐标为7,点C的纵坐标为7267512点B的坐标为0,5,BCD中CD边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 世界文化之旅-课件
- 《库存管理与控制》课件
- 2024年乡镇计划生育服务站工作总结
- 【课件】2024-2025学年上学期元旦主题班会课件
- 《项目管理》学习领域课程标准
- 第23课 内战爆发(解析版)
- 《设计过程质量管理》课件
- 《生活安全指南》课件
- 化妆品行业促销方案总结
- 2023-2024年项目部安全管理人员安全培训考试题【有一套】
- 轮胎返点协议
- 互联网金融(同济大学)智慧树知到期末考试答案2024年
- 国家开放大学管理英语4形考任务1-8
- 教育推广之路
- 患者入院评估课件
- 如何平衡工作和生活的时间安排
- 蜜雪冰城新媒体营销策略分析
- 爱国主题教育班会《我爱我的祖国》
- 《南来北往》爱奇艺大剧招商方案
- 【潮汕英歌舞的艺术特点与传承发展探究9800字】
- 药品集中采购教育培训
评论
0/150
提交评论