电大-电力负荷预测_第1页
电大-电力负荷预测_第2页
电大-电力负荷预测_第3页
电大-电力负荷预测_第4页
电大-电力负荷预测_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、PAGE PAGE 6 编号:中国农业大学现代远程教育毕业论文(设计)电力负荷预测学 生 指导教师 专 业 层 次 批 次 学 号 学习中心 工作单位 年 月 中国农业大学网络教育学院制论文格式要求论文开本大小:A4纸;页面设置:左边距:30mm,右边距:25mm;上边距:30mm,下边距:25mm封面:论文题目小于25个字,隶书、二号、加粗,其他项为隶书、三号; 摘要:300字左右,宋体、小四;关键词:35个,宋体、小四、各关键词间距3个空格;目录:内容为宋体、四号;正文:宋体、五号,行间距18磅; 正文字数:本科至少6000字,专科至少4000字一级标题:宋体、三号、加粗,段前段后间距为一

2、行、左对齐、单列一行,如:1 优秀毕业论文 ;二级标题:宋体、四号、加粗,段前段后间距为一行、左对齐、单列一行,如:1.1优秀毕业论文 ;三级标题:宋体、小四号、加粗,段前段后间距为一行、左对齐、单列一行,如:1.1.1优秀毕业论文 ;参考文献:本科至少15篇,专科至少10篇,宋体、五号,书写格式应严格按照规范要求书写;摘要、目录、后记、参考文献、附录:作为标题要居中,其他格式同正文一级标题。图(表):标题宋体、小五号、加粗,内容宋体、小五号,表注为宋体、六号;特殊说明:论文正文第一部分内容必须包括本文研究背景、研究现状、研究目的和意义。其他具体细则见中国农业大学现代远程教育毕业论文写作要求和

3、格式规范,要求学生的毕业论文稿件严格按上述规定进行整理,以符合规范要求。独 创 性 声 明本人声明所呈交的毕业论文(设计)是我个人进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢的地方外,论文(设计)中不包含其他人已经发表或撰写过的研究成果,也不包含为获得中国农业大学或其它教育机构的学位或证书而使用过的材料。与我一同工作的同志对本研究所做的任何贡献均已在毕业论文(设计)中作了明确的说明并表示了谢意。学生签名: 时间: 年 月 日关于论文(设计)使用授权的说明本人完全了解中国农业大学网络教育学院本、专科毕业论文(设计)工作条例(暂行规定)对:“成绩为优秀毕业论文(设计),网络

4、教育学院将有权选取部分论文(设计)全文汇编成集或者在网上公开发布。如因著作权发生纠纷,由学生本人负责”完全认可,并同意中国农业大学网络教育学院可以以不同方式在不同媒体上发表、传播毕业论文(设计)的全部或部分内容。中国农业大学网络教育学院有权保留送交论文(设计)的复印件和磁盘,允许论文(设计)被查阅和借阅,可以采用影印、缩印或扫描等复制手段保存、汇编论文(设计)。保密的毕业论文(设计)在解密后应遵守此协议学生签名: 时间: 年 月 日摘要电力系统负荷预测是确保电力系统安全经济运行的重要手段之一,随着我国电力市场的建立和发展,对这一区域内电力规划、电力工业布局、能源资源平衡以及电网资金和人力资源的

5、需求与平衡提供可靠的依据。因此,电力负荷预测是一项十分重要的工作,它对于保证电力工业的健康发展,乃至对于整个国民经济的发展均有着十分重要的意义。现阶段我国针对短期负荷预测技术进行研究,主要包括数学统计方法和人工智能方法。其中人工智能方法包括人工神经网络法、专家系统方法和模糊推理方法、小波分析等。本文主要介绍一种基于BP神经网络的短期负荷预测方法,经过实例证明,这种方法在短期负荷预测方面具有一定的应用价值。关键词:电力负荷预测 人工智能 BP神经网络目 录 TOC o 1-3 h z u HYPERLINK l _Toc432585944 1、前言 PAGEREF _Toc432585944 h

6、 1 HYPERLINK l _Toc432585945 1.1 电力负荷预测的含义 PAGEREF _Toc432585945 h 1 HYPERLINK l _Toc432585946 1.2 研究的目的和意义 PAGEREF _Toc432585946 h 1 HYPERLINK l _Toc432585947 2、电力负荷分析 PAGEREF _Toc432585947 h 1 HYPERLINK l _Toc432585948 3、电力负荷预测的内容 PAGEREF _Toc432585948 h 2 HYPERLINK l _Toc432585949 4、电力负荷预测的程序过程 P

7、AGEREF _Toc432585949 h 2 HYPERLINK l _Toc432585950 4.1 准备阶段 PAGEREF _Toc432585950 h 2 HYPERLINK l _Toc432585951 4.2 实施预测阶段 PAGEREF _Toc432585951 h 3 HYPERLINK l _Toc432585952 4.3 评价预测阶段 PAGEREF _Toc432585952 h 3 HYPERLINK l _Toc432585953 4.4 题出预测报告阶段 PAGEREF _Toc432585953 h 3 HYPERLINK l _Toc4325859

8、54 5、预测模型的建立与使用 PAGEREF _Toc432585954 h 4 HYPERLINK l _Toc432585955 5.1 神经网络技术 PAGEREF _Toc432585955 h 4 HYPERLINK l _Toc432585956 5.2 电力系统短期负荷预测建模及MATLAB实现 PAGEREF _Toc432585956 h 4 HYPERLINK l _Toc432585957 6、结束语 PAGEREF _Toc432585957 h 5 HYPERLINK l _Toc432585958 参考文献 PAGEREF _Toc432585958 h 61、前

9、言1.1 电力负荷预测的含义电力负荷有两方面的含义:一方面是指电力工业的服务对象,包括使用电力的部门、机关、企事业单位、工厂、农村、车间、学校以及各种各样的用电设备;另一方面是指上述各用电单位、用电部门或用电设备使用电力和电量的具体数量。电力负荷预测中的负荷概念是指国民经济整体或部门或地区对电力和电量消费的历史情况及未来的变化发展趋势。1.2 研究的目的和意义电力用户是电力工业的服务对象,电力负荷的不断增长是电力工业发展的根据。正确地预测电力负荷,既是为了保证无条件供应国民经济各部门及人民生活以充足的电力的需要,也是电力工业自身健康发展的需要。电力负荷预测工作既是电力规划工作的重要组成部分,也

10、是电力规划的基础。2、电力负荷分析本文对某市进行电力短期负荷预测,电力负荷的构成与特点如下:电力系统负荷一般可以分为城市民用负荷、商业负荷、农村负荷、工业负荷以及其他负荷等,不同类型的负荷具有不同的特点和规律。城市民用负荷主要是城市居民的家用电器,它具有年年增长的趋势,以及明显的季节性波动特点,而且民用负荷的特点还与居民的日常生活和工作的规律紧密相关。商业负荷,主要是指商业部门的照明、空调、动力等用电负荷,覆盖面积大,且用电增长平稳,商业负荷同样具有季节性波动的特性。虽然商业负荷在电力负荷中所占比重不及工业负荷和民用负荷,但商业负荷中的照明类负荷占用电力系统高峰时段1。此外,商业部门由于商业行

11、为在节假日会增加营业时间,从而成为节假日中影响电力负荷的重要因素之一。 工业负荷是指用于工业生产的用电,一般工业负荷的比重在用电构成中居于首位,它不仅取决于工业用户的工作方式,而且与各行业的行业特点、季节因素都有紧密的联系,一般负荷是比较恒定的。农村负荷则是指农村居民用电和农业生产用电。此类负荷与工业负荷相比,受气候、季节等自然条件的影响很大,这是由农业生产的特点所决定的。农业用电负荷也受农作物种类、耕作习惯的影响,但就电网而言,由于农业用电负荷集中的时间与城市工业负荷高峰时间有差别,所以对提高电网负荷率有好处2。从以上分析可知电力负荷的特点是经常变化的,不但按小时变、按日变,而且按周变,按年

12、变,同时负荷又是以天为单位不断起伏的,具有较大的周期性,负荷变化是连续的过程,一般不会出现大的跃变,但电力负荷对季节、温度、天气等是敏感的,不同的季节,不同地区的气候,以及温度的变化都会对负荷造成明显的影响。3、电力负荷预测的内容电力负荷预测的内容是指需要测算些什么量(或参数),归纳起来有以下一些参数需要测算。(1)最大有功负荷及其分布。最大有功负荷的大小是确定电力系统装机规模的基础数据,换句话说是电源规划的依据3。有功负荷,加上电网中损失的有功和发电厂自用有功量,再加上适量的备用容量,就等于电力系统的装机容量。有功负荷的分布是输电线路设计的基础,也是变电所配置的基础,即有功负荷的地区分布特点

13、是输变电规划和配电规划的主要依据。(2)无功负荷及其分布。无功负荷的大小及分布是确定电力系统无功电源规划的基础,也是影响电力系统安全经济运行的重要因素。(3)需电量。它是进行能源供需平衡的主要依据。(4)电力负荷曲线及其特征值。电力负荷大小及其在时间上的分布特征,对电力规划及电力系统运行是至关重要的4。它是确定电力系统中电源结构、调峰容量需求、运行方式及能源平衡的主要依据。负荷预测根据目的的不同可以分为超短期、短期、中期和长期:超短期负荷预测是指未来1h以内的负荷预测,在安全监视状态下,需要510s或15min的预测值,预防性控制和紧急状态处理需要10min至1h的预测值。短期负荷预测是指日负

14、荷预测和周负荷预测,分别用于安排日调度计划和周调度计划,包括确定机组起停、水火电协调、联络线交换功率、负荷经济分配、水库调度和设备检修等,对短期预测,需充分研究电网负荷变化规律,分析负荷变化相关因子,特别是天气因素、日类型等和短期负荷变化的关系。中期负荷预测是指月至年的负荷预测,主要是确定机组运行方式和设备大修计划等5。长期负荷预测是指未来35年甚至更长时间段内的负荷预测,主要是电网规划部门根据国民经济的发展和对电力负荷的需求,所作的电网改造和扩建工作的远景规划。对中、长期负荷预测,要特别研究国民经济发展、国家政策等的影响。4、电力负荷预测的程序过程电力负荷预测是一个过程,其一般程序可划分为准

15、备、实施、评价与提交预测报告四个阶段。4.1 准备阶段准备阶段的工作是由确定预测目标、落实组织工作、搜集资料、分析资料和选择方法等工作组成6。(1)确定预测目标。确定目标就是要在明确预测目的前提下,规定预测对象的范围、内容和预测期限。一般而言,预测范围视研究问题所涉及的范围而定,编制全国电力规划,就要预测全国范围内的电力、电量需求量;编制大区网局或地方(省、地、县)电力局的发展规划,就要预测大区电网或地方电力局范围内的电力、电量需求量。预测内容是指包括电力、电量、电力负荷的地区分布,电力负荷随时间的变化规律,以及电力负荷曲线特征及负荷曲线等。预测期限是指预测的时间长短,一般电力规划中负荷预测期

16、限有短期预测(即5年期预测),中期预测(即510年期预测),及长期预测(即15年以上的预测)。(2)搜集与整理资料。资料是预测的基本依据,占有的资料的充裕程度及资料的可信度,对预测结果的可信度是至关重要的7。一般在做电力负荷预测时需要搜集与整理的资料主要有:电力系统历年用电负荷、用电量、用电构成;经济发展目标(如国民生产总值、国民收入等);国民经济结构的历史、现状及可能的变化发展趋势;人口预测资料及人均收入水平;能源利用效率及用电比重的变化;工业布局及用户的用电水平指标;以及国外参考国家的上述类似历史资料。(3)分析资料,选择预测方法。对经过鉴别整理后的资料要进行分析,以寻求其规律。在预测中常

17、用的分析方法有多种,如时间序列分析、因果关系分析等方法。要根据资料的掌握情况及资料样式,选择相应的预测方法,寻求预测量的演变规律或趋势,建立预测模型。没有一种方法在任何预测场合下均可以保证获得满意的结果。因此,必须根据对资料的占有情况,以及预测目标、预测期限,预测环境、预测结果的精确度,同时考虑预测本身的效益成本分析等进行权衡,以便作出合理的选择8。4.2 实施预测阶段在进行预测时,要依据选择的预测方法来进行预测。如果是采用定量预测方法来进行预测,就要根据建立的定量预测模型,带入预测期的自变量目标值,就可以获得预测期所要的预测变量值。如果是采用定性预测方法来进行预测,就应根据掌握的客观资料进行

18、科学的逻辑推理,推断出预测期的预测值。由于影响预测对象的诸因素可能会发生变化,从而可能使未来的实际结果与预测依据的历史资料呈现的规律不相吻合,预测人员必须适时的对预测模型及预测结果加以修正。这种情况下,预测人员的经验、理论素养及分析判断能力起重要的作用9。4.3 评价预测阶段预测的主要成果是得到预测结果。预测结果应该是明确的,可以被检验的。因此,在得到预测结果后必须对预测结果的准确度和可靠性进行评价。务使预测误差处于可接受的范围内。若误差太大,就失去了预测的意义,并从而导致电力规划的失误。4.4 提出预测报告阶段预测报告是预测结果的文字表述。预测报告一般包括题目、摘要、正文、结论、建议、和附录

19、等部分。预测题目主要反映预测目标、预测对象、预测范围和预测时限。摘要通常说明预测中的主要发现、预测的结果及提出的主要建议和意见。摘要与题目配合,可以引起有关方面的重视。正文包括分析及预测过程、预测模型及说明、有关计算方法、必要的图表、预测的主要结论及对主要结论的评价。结论与建议是扼要地列出预测的主要结果,提出有关建议和意见。附录主要包括说明正文的附表、资料,预测中采用的计算方法的推导和说明,以及正文中未列出的有价值的其他资料。5、预测模型的建立与使用5.1 神经网络技术运用神经网络技术进行电力负荷预测,其优点是可以模仿人脑的智能化处理,对大量非结构性、非精确性规律具有自适应功能,具有信息记忆、

20、自主学习、知识推理和优化计算的特点,特别的,其自学习和自适应功能是常规算法和专家系统技术所不具备的。以用作时间序列预测。误差反向传播算法又称为BP神经网络算法,提出一个简单的三层人工神经网络模型,就能实现从输入到输出间非线性映射任何复杂函数关系。因此,我们可以将对电力负荷影响最大的几种因素作为输入,即当天的天气温度、天气晴朗度(又称为能见度)、风向风力、峰谷负荷及相关负荷等,争取获得较好的预测结果10。BP神经网络理论是利用神经网络的学习功能,让计算机学习包含在历史负荷数据中的映射关系,再利用这种映射关系预测未来负荷。由于该方法具有很强的鲁棒性、记忆能力、非线性映射能力以及强大的自学习能力,因

21、此有很大的应用市场,但其缺点是学习收敛速度慢,可能收敛到局部最小点;并且知识表达困难,难以充分利用调度人员经验中存在的模糊知识11。5.2 电力系统短期负荷预测建模及MATLAB实现负荷预测对电力系统控制、运行和计划都有着重要的意义。电力系统负荷变化受多方面的影响,一方面,负荷变化存在着由未知不确定的因素引起的随机的波动;另一方面,又具有周期变化的规律性,这也使得负荷曲线具有相似性。由于神经网络所具有的较强的非线性映射等特性,它常被用于负荷预测。本文采用MATLAB软件编程、仿真,具体过程如下所示:(1) 问题描述电力系统负荷短期预报问题的解决办法和方式可以分为统计技术、专家系统法和神经网络法

22、等。众所周知,负荷曲线是很多因素相关的一个非线性函数。对于抽样和逼近这种非线性函数,神经网络是一种合适的方法。神经网络的优点在于它具有模拟多变量而不需要对输入变量做复杂的相关假设的能力。它不依靠专家经验,只利用观察到的数据,可以从训练过程中通过学习来抽样和逼近隐含的输入/输出非线性的关系。近年来的研究表明,相对于前两种方法,利用神经网络技术进行电力系统短期负荷预报可获得更高的精度。在对短期负荷进行预报前,一个特别重要的问题是如何划分负荷类型或日期类型。纵观已经发表的文献资料,大体有以下几种划分模式:1)将一周的7天分为工作日和休息日等两种类型;2)将一周分为星期一、星期二到星期四、星期五、星期

23、六、星期天等5种类型。3)将一周的7天每天都看做一种类型,共有7种类型。本文采用第1种负荷划分模式,将一周的7天分为工作日(星期一到星期五)和休息日(星期六和星期天)等两种类型。(2) 输入/输出向量设计在预测日的前一天中,每1个小时对电力负荷进行一次测量,这样一来,一天共测得24组负荷数据。由于负荷值曲线相邻的点之间不会发生突变,因此后一时刻的值必然和前一时刻的值有关,除非出现重大事故等特殊情况。所以这里将前一天的实时负荷数据作为网络的样本数据12。此外,由于电力负荷还与环境因素有关,如最高和最低温度等。因此,还需要通过天气预报等手段获得预测日的最高和最低温度。这里将电力负荷预测日当日的气象

24、特征数据作为网络的输入变量。因此,输入变量就是一个26维的向量。显而易见,目标向量就是预测日当天的24个负荷值,即一天中每个整点的电力负荷。这样一来,输出变量就成为一个24维的向量。(3)BP网络的设计本文依据人工神经网络来建模,根据BP网络来预测24点负荷。BP网络是系统预测中应用特别广泛的一种网络形式,因此,本文采用BP网络对负荷值进行预报。根据BP网络来设计网络,一般的预测问题都可以通过单隐层的BP网络实现。本文由于输入向量有26个元素,所以网络输入层的神经元有26个,经过多次训练网络中间层的神经元可以取53个。而输出向量有24个,所以输出层中的神经元应该有24个。网络中间层的神经元传输

25、函数采用S型正切函数tansig,输出层神经元传递函数采用S型对数函数logsig。这是因为函数的输出位于区间0,1中,正好满足网络输出的要求13。(4)网络训练计算出预测日24点的归一化系数网络经过训练后才可以用于电力负荷预测的实际应用。考虑到网络的结构比较复杂,神经元个数比较多,需要适当增大训练次数和学习速率。(5)结论分析电力负荷预测是电力调度、用电、计划、规划等部门的重要工作,国内外关于短期负荷预测的文献很多,但是由于电力负荷受诸多因素的影响和负荷本身的不确定性,使得迄今还没有一种十分满意的方法。本文介绍的基于BP神经网络的预测方法,在综合考虑天气情况、历史负荷和日类型等对未来负荷影响的因素后,使用了神经网络的非线性拟合等功能,取得了较好的负荷预测效果14。6、结束语本文介绍的电力短期负荷预测的特点,即都是受多个影响因素共同影响,且各个因素之间有着比较复杂的关系,具有高度不确定的非线性系统,利用传统的预测方法有着诸多限制,而采用神经网络方法则能较好地克服这些限制,实现精确的非线性预测。为了进一步提高网络的预测精度,需要从以下几个方面展开研究:(1)网络的训练过程是从给定的样本数据中归纳出输入、输出之间的复杂规律,为了能

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论