2023学年江苏省南京市秦淮区四校九年级数学第一学期期末教学质量检测试题含解析_第1页
2023学年江苏省南京市秦淮区四校九年级数学第一学期期末教学质量检测试题含解析_第2页
2023学年江苏省南京市秦淮区四校九年级数学第一学期期末教学质量检测试题含解析_第3页
2023学年江苏省南京市秦淮区四校九年级数学第一学期期末教学质量检测试题含解析_第4页
2023学年江苏省南京市秦淮区四校九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每题4分,共48分)1某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次小张同学统计了一下,全班同学共握手了465次你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A=465B=465Cx(x1)=465Dx(x+1)=4652八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A95分,95分B95分,90分C90分,95分D95分,85分3下列四个银行标志中,既是中心对称图形,又是轴对称图形

3、的是( )ABCD4将抛物线yx22向上平移1个单位后所得新抛物线的表达式为( )Ay1By3Cy2Dy25宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GHAD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A矩形ABFEB矩形EFCDC矩形EFGHD矩形DCGH6如图,是正方形与正六边形的外接圆则正方形与正六边形的周长之比为( )ABCD7sin30等于( )ABCD8若是方程的两

4、根,则实数的大小关系是( )ABCD9如图,经过原点的与轴分别交于两点,点是劣弧上一点,则()A是锐角B是直角C是钝角D大小无法确定10在一个有 10 万人的小镇,随机调查了 1000 人,其中有 120 人周六早上观看中央电视台的“朝闻天下”节目,那么在该镇随便问一个人,他在周六早上观看中央电视台的“朝闻天下”节目的概率大约是()ABCD11如图,平行四边形的顶点在双曲线上,顶点在双曲线上,中点恰好落在轴上,已知,则的值为( )A-8B-6C-4D-212如图,,四点都在上,则的度数为( )ABCD二、填空题(每题4分,共24分)13在RtABC中,两直角边的长分别为6和8,则这个三角形的外

5、接圆的直径长为_14用一个半径为10的半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_15已知二次函数yax2+bx+c的图象如图所示,则a_1,b_1,c_116我国古代数学著作增删算法统宗记载“圆中方形”问题:“今有圆田一段,中间有个方池,丈量田地待耕犁,恰好三分在记,池面至周有数,每边三步无疑,内方圆径若能知,堪作算中第一”其大意为:有一块圆形的田,中间有一块正方形水池,测量出除水池外圆内可耕地的面积恰好72平方步,从水池边到圆周,每边相距3步远如果你能求出正方形的边长是x步,则列出的方程是_17方程的根是_.18分解因式:= _三、解答题(共78分)19(8分)如图,在平面直角坐标系

6、中,三个顶点的坐标分别为A(2,3)、B(1,1)、C(5,1)(1)把平移后,其中点移到点,面出平移后得到的;(2)把绕点按逆时针方向旋转,画出旋转后得到的,并求出旋转过程中点经过的路径长(结果保留根号和)20(8分)八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图 类别 频数(人数) 频率 小说 0.5 戏剧 4 散文 10 0.25 其他 6 合计 1根据图表提供的信息,解答下列问题:(1)八年级一班有多少名学生?(2)请补全频数分布表,并

7、求出扇形统计图中“其他”类所占的百分比;(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率21(8分)先化简,再求值:(1+),其中a122(10分) “五一劳动节大酬宾!”,某商场设计的促销活动如下:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“50元”的字样规定:在本商场同一日内,顾客每消费满300元,就可以在箱子里先后摸出两个球(第一次摸出后不放回)商场根据两小球所标金额的和返还相等价格的购物券,购物券可以在本商场消费某顾

8、客刚好消费300元 (1)该顾客至多可得到_元购物券; (2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于50元的概率23(10分)甲、乙、丙、丁共四支篮球队要进行单循环积分赛(每两个队间均要比赛一场),每天比赛一场,经抽签确定比赛场次顺序(1)甲抽到第一场出场比赛的概率为 ;(2)用列表法或树状图计算甲、乙两队抽得第一场进行比赛的概率24(10分)如图,在平面直角坐标系中,矩形的顶点,的坐标分别,以为顶点的抛物线过点动点从点出发,以每秒个单位的速度沿线段向点匀速运动,过点作轴,交对角线于点设点运动的时间为(秒)(1)求抛物线的解析式;(2)若分的面积为的两部分,求的值;(3

9、)若动点从出发的同时,点从出发,以每秒1个单位的速度沿线段向点匀速运动,点为线段上一点若以,为顶点的四边形为菱形,求的值 25(12分)为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图 请根据图表中所提供的信息,完成下列问题:(1)表中_,_,样本成绩的中位数落在证明见解析_范围内;(2)请把频数分布直方图补充完整;(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在范围内的学生有多少人?26在一个不透明的袋子中装有大小、形状完全相同的三个小球,上面分别标有1,2,3三个数字(1)从中随机摸出一个球

10、,求这个球上数字是奇数的概率是 ;(2)从中先随机摸出一个球记下球上数字,然后放回洗匀,接着再随机摸出一个,求这两个球上的数都是奇数的概率(用列表或树状图方法)参考答案一、选择题(每题4分,共48分)1、A【解析】因为每位同学都要与除自己之外的(x1)名同学握手一次,所以共握手x(x1)次,由于每次握手都是两人,应该算一次,所以共握手x(x1)2次,解此方程即可.【详解】解:设九年级(1)班有x名同学,根据题意列出的方程是 =465,故选A【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.2、A【详解】这组数据中95出现了3次,次数最多,为

11、众数;中位数为第3和第4两个数的平均数为95,故选A.3、C【分析】根据轴对称图形和中心对称图形的概念逐一进行判断即可得.【详解】A、是轴对称图形,不是中心对称图形,故不符合题意;B、是轴对称图形,不是中心对称图形,故不符合题意;C、是轴对称图形,也是中心对称图形,故符合题意;D、是轴对称图形,不是中心对称图形,故不符合题意,故选C.【点睛】本题主要考查轴对称图形和中心对称图形,在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形;在平面内,如果把一个图形绕某个点旋转180后,能与原图形重合,那么就说这个图形是中心对称图形.4、A【分析】根据“上加下减,左

12、加右减”的原则进行解答即可【详解】解:将抛物线yx22向上平移1个单位后所得新抛物线的表达式为yx22+1,即yx21故选:A【点睛】本题考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键5、D【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形【详解】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,矩形DCGH为黄金矩形故选:D【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABG

13、H也为黄金矩形6、A【解析】计算出在半径为R的圆中,内接正方形和内接正六边形的边长即可求出周长之间的关系;【详解】设此圆的半径为R,则它的内接正方形的边长为,它的内接正六边形的边长为R,内接正方形和外切正六边形的边长比为R:R=:1正方形与正六边形的周长之比=:6=故答案选:A;【点睛】考查了正多边形和圆,解决圆的相关问题一定要结合图形,掌握基本的图形变换找出内接正方形与内接正六边形的边长关系,是解决问题的关键7、B【解析】分析:根据特殊角的三角函数值来解答本题详解:sin30= 故选B点睛:本题考查了特殊角的三角函数值,特殊角三角函数值的计算在中考中经常出现,题型以选择题、填空题为主8、A【

14、分析】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图即可判断.【详解】设,可判断抛物线开口向下,m、n是其与x轴交点的横坐标,a、b则是抛物线与直线y=2的交点横坐标,画出函数草图如下:从函数图象可以看出:故选:A【点睛】本题考查的是二次函数与一元二次方程的关系,掌握抛物线与x轴的交点的横坐标为y=0时,一元二次方程的根是关键.9、B【分析】根据圆周角定理的推论即可得出答案【详解】和对应着同一段弧 ,是直角故选:B【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键10、C【解析】试题解析:由题意知:1000人中

15、有120人看中央电视台的早间新闻,在该镇随便问一人,他看早间新闻的概率大约是故选C【点睛】本题考查概率公式和用样本估计总体,概率计算一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=11、C【分析】连接OB,过点B作轴于点D,过点C作于点E,证,再利用三角形的面积求解即可【详解】解:连接OB,过点B作轴于点D,过点C作于点E,点P是BC的中点PC=PB点在双曲线上点在双曲线上故选:C【点睛】本题考查的知识点是反比例函数的图象与性质、平行四边形的性质、全等三角形的判定与性质、三角形的面积公式等,掌握以上知识点是解此题的关键12、C【分析

16、】根据圆周角定理求出A,根据圆内接四边形的性质计算即可【详解】由圆周角定理得,A=BOD=,四边形ABCD为O的内接四边形,BCD=A=,故选:C.【点睛】本题考查了圆周角定理以及圆内接四边形的性质,熟练掌握性质定理是解题的关键.二、填空题(每题4分,共24分)13、1【分析】根据题意,写出已知条件并画出图形,然后根据勾股定理即可求出AB,再根据圆周角为直角所对的弦是直径即可得出结论.【详解】如图,已知:AC8,BC6,由勾股定理得:AB1,ACB90,AB是O的直径,这个三角形的外接圆直径是1;故答案为:1【点睛】此题考查的是求三角形的外接圆的直径,掌握圆周角为直角所对的弦是直径是解决此题的

17、关键.14、5【解析】试题解析:半径为10的半圆的弧长为:210=10围成的圆锥的底面圆的周长为10设圆锥的底面圆的半径为r,则2r=10解得r=515、 【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断【详解】解:由抛物线的开口方向向下可推出a1;因为对称轴在y轴左侧,对称轴为x1,又因为a1,b1;由抛物线与y轴的交点在y轴的正半轴上,c1【点睛】本题考查了二次函数的图象和性质,属于简单题,熟悉二次函数的图象是解题关键.16、【分析】根据圆的面积-正方形的面积=可耕地的面积即可解答.【详解】解:正

18、方形的边长是x步,圆的半径为()步列方程得:.故答案为.【点睛】本题考查圆的面积计算公式,解题关键是找出等量关系.17、0和-4.【分析】根据因式分解即可求解.【详解】解x1=0,x2=-4,故填:0和-4.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知一元二次方程的解法.18、【解析】分解因式的方法为提公因式法和公式法及分组分解法原式=a(3+a)(3-a)三、解答题(共78分)19、(1)详见解析;(2)画图详见解析,【分析】(1)根据点A、B、C的坐标描点,从而可得到ABC,利用点A和的坐标关系可判断ABC先向右平移3个单位,再向上平移2个单位得到,利用此平移规律找到的坐标,然

19、后描点即可得到;(2)按要求画即可,其中旋转90度是关键,根据弧长公式计算即可【详解】解:(1)如图,即为所求(2)如图,即为所求,绕点按逆时针方向旋转得,点经过的路径长是圆心角为90,半径为:的扇形的弧长, 即点经过的路径长为:【点睛】本题考查了平移变换、旋转变换,解题关键在于掌握作图法则20、(1)41(2)15%(3)【分析】(1)用散文的频数除以其频率即可求得样本总数;(2)根据其他类的频数和总人数求得其百分比即可;(3)画树状图得出所有等可能的情况数,找出恰好是丙与乙的情况,即可确定出所求概率【详解】(1)喜欢散文的有11人,频率为125,m=11125=41;(2)在扇形统计图中,

20、“其他”类所占的百分比为 111%=15%,故答案为15%;(3)画树状图,如图所示:所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,P(丙和乙)=21、化简为,值为【分析】先将分式化简,再把值代入计算即可【详解】原式,当a1时,原式【点睛】本题考查分式的化简求值,关键在于熟练掌握化简方法22、(1)70;(2)画树状图见解析,该顾客所获得购物券的金额不低于50元的概率1【解析】试题分析:(1)由题意可得该顾客至多可得到购物券:50+20=70(元);(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与该顾客所获得购物券的金额不低于50元的情况,再利用概率公式即可求得答案试

21、题解析:(1)则该顾客至多可得到购物券:50+20=70(元);(2)画树状图得:共有12种等可能的结果,该顾客所获得购物券的金额不低于50元的有6种情况,该顾客所获得购物券的金额不低于50元的概率为:61223、 (1);(2) 【分析】(1)直接利用概率公式计算可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式求解可得【详解】解答】解:(1)甲抽到第一场出场比赛的概率为,故答案为:;(2)画树状图得:共有12种等可能的结果,恰好选中甲、乙两队的有2种情况,甲、乙两队抽得第一场进行比赛的概率为【点睛】本题考查了用列表法或树状图计算概率的方法,概率=所求情况

22、数与总情况数之比24、(1);(2)的值为或;(3)的值为或【分析】(1)运用待定系数法求解;(2)根据已知,证,可得或;(3)分两种情况:当为菱形的对角线时:由点,的横坐标均为,可得求直线的表达式为,再求N的纵坐标,得,根据菱形性质得,可得在中,得同理,当为菱形的边时:由菱形性质可得,由于,所以结合三角函数可得.【详解】解:(1)因为,矩形的顶点,的坐标分别,所以A的坐标是(1,4),可设函数解析式为: 把代入可得,a=-1所以,即(2)因为PECD所以可得由分的面积为的两部分,可得所以,解得所以,的值为=(秒)或,解得所以,的值为综上所述,的值为或(3)当为菱形的对角线时:由点,的横坐标均为,可得设直线AC的解析式为,把A,C的坐标分别代入可得 解得所以直线的表达式为将点的横坐标代入上式,得即由菱形可得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论