版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、关于函数极限运算法则第1页,共32页,2022年,5月20日,11点2分,星期四定理证:一.极限的四则运算下面证明(2),其它证法类同.第2页,共32页,2022年,5月20日,11点2分,星期四(2)成立.第3页,共32页,2022年,5月20日,11点2分,星期四推论常数因子可以提到极限记号外面.推论2第4页,共32页,2022年,5月20日,11点2分,星期四二、求极限方法举例解:解:第5页,共32页,2022年,5月20日,11点2分,星期四解例第6页,共32页,2022年,5月20日,11点2分,星期四类型:(一)有理函数在 时的极限第7页,共32页,2022年,5月20日,11点2
2、分,星期四约去零因子法当4时,分子分母都为0,故可约去公因子(4).第8页,共32页,2022年,5月20日,11点2分,星期四(二).对x时的极限,可用分子,分母中x的最高次幂除之,然后再求极限.例5解:第9页,共32页,2022年,5月20日,11点2分,星期四结论.无穷小分出法:以分母中自变量的最高次幂除分子,分母,以分出无穷小,然后再求极限. ( ) 第10页,共32页,2022年,5月20日,11点2分,星期四(三).其它类型的极限求法.(型)分析:当x1时,上式两 项极限均不存在(呈现 形式)方法是:可先通分,再求极限.第11页,共32页,2022年,5月20日,11点2分,星期四
3、分析:当0时,分子分母极限均为0,不能直接用商极限法则.方法是:可先对分子有理化,然后再求极限.第12页,共32页,2022年,5月20日,11点2分,星期四第13页,共32页,2022年,5月20日,11点2分,星期四解商的法则不能用例8由无穷小与无穷大的关系,得第14页,共32页,2022年,5月20日,11点2分,星期四例9解例10解第15页,共32页,2022年,5月20日,11点2分,星期四例11 已知极限解 第16页,共32页,2022年,5月20日,11点2分,星期四总结:(1).运用极限法则时,必须注意 只有各项极限存在(除式,还要分母极限不为0)才能适用;(2).若所求极限呈
4、现 等形式不能直接用极限法则,必须先对原式进行恒等变形(约分,通分,有理化,变量代换等),然后再求极限.(3).利用无穷小的运算性质求极限.第17页,共32页,2022年,5月20日,11点2分,星期四二、两个重要极限1.第18页,共32页,2022年,5月20日,11点2分,星期四第19页,共32页,2022年,5月20日,11点2分,星期四第20页,共32页,2022年,5月20日,11点2分,星期四例题:第21页,共32页,2022年,5月20日,11点2分,星期四解第22页,共32页,2022年,5月20日,11点2分,星期四例解第23页,共32页,2022年,5月20日,11点2分,星期四2.第24页,共32页,2022年,5月20日,11点2分,星期四第25页,共32页,2022年,5月20日,11点2分,星期四例6解第26页,共32页,2022年,5月20日,11点2分,星期四例7. 得x=u+3第27页,共32页,2022年,5月20日,11点2分,星期四解例8第28页,共32页,2022年,5月20日,11点2分,星期四例9解第29页,共32页,2022年,5月20日,11点2分,星期四例10解第30页,共32页,2022年,5月20日,11点2分,星期四小结:两个重要极限第
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年黄冈道路客运驾驶员从业资格证考试题库
- 2024年潮州客运从业资格证考试模拟题
- 2024年长治大客车从业资格证考试
- 2024年黑龙江客运资格考试考题题库答案
- 2024年昆明客运驾驶员考试试卷题库
- 2024年江门道路运输客运从业资格证考试模拟试题
- 模拟量通道校验记录表
- 研究生团员个人年度总结5篇范文
- 青岛市第十五届职业技能大赛技术文件-家电维修
- 新生儿科跌倒坠床防范措施
- 集装箱购销协议合同范本示例
- 室内装修施工安全方案
- 工程询价合同模板
- 事业单位招聘《综合基础知识》考试试题及答案
- 无锡风机吊装施工方案
- 《突发事件应急预案管理办法》知识培训
- 江苏省南京市建邺区2024-2025学年九年级上学期期中考试物理试题(无答案)
- 中小学师德师风建设各项制度汇编
- QCT457-2023救护车技术规范
- DZ∕T 0207-2020 矿产地质勘查规范 硅质原料类(正式版)
- 《烧(创)伤的急救复苏与麻醉管理》智慧树知到课后章节答案2023年下中国人民解放军总医院第四医学中心
评论
0/150
提交评论