版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每题4分,共48分)1如图,若一次函数的图象经过二、三、四象限,则二次函数的图象可能是ABCD2已知x1,x2是一元二次方程的两根,则x1x2的值是( )A0B2C2D43孙子算经是我国古代重要的数学著作,其有题译文如下:“有一根竹竿在太阳下的影子长尺.同时立一根尺的小标杆,它的影长是尺。如图所示,则可求得这根竹竿的长度为( )尺AB
2、CD4如图,在矩形中,过对角线交点作交于点,交于点,则的长是( )A1BC2D5孙子算经中有一道题: “今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余尺;将绳子对折再量木条,木条剩余尺,问木条长多少尺?”如果设木条长尺,绳子长尺,可列方程组为( )ABCD6如图,在中,以边的中点为圆心作半圆,使与半圆相切,点分别是边和半圆上的动点,连接,则长的最大值与最小值的和是( )A8B9C10D127在同一平面直角坐标系内,将函数y2x2+4x3的图象向右平移2个单位,再向下平移1个单位得到图象的顶点坐标是()A(3,6)B(1,
3、4)C(1,6)D(3,4)8如图,四边形内接于圆,过点作于点,若,则的长度为()AB6CD不能确定9一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是( )A4B5C6D810同时投掷两个骰子,点数和为5的概率是( )ABCD11如图所示,河堤横断面迎水坡AB的坡比是1:,堤高BC=5m,则坡面AB的长度是( )A10mB10mC15mD5m12已知O的半径为4cm若点P到圆心O的距离为3cm,则点P()A在O内B在O上C在O外D与O的位置关系无法确定二、填空题(每题4分,共24分)13抛物线的顶点坐标是_14如图:在ABC中,AB=13,
4、BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么ACD的周长是_15将方程化成一般形式是_16二次函数中的自变量与函数值的部分对应值如下表:则的解为_17若关于x的函数与x轴仅有一个公共点,则实数k的值为 .18在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进行下去,则点A2019的坐标为_三、解答题(共78分)19(8分)如图是一种简易台灯的结构图,灯座为ABC,A、C、D在
5、同一直线上,量得ACB=90,A=60,AB=16cm,ADE=135,灯杆CD长为40cm,灯管DE长为15cm.求台灯的高(即台灯最高点E到底盘AB的距离).(结果取整,参考数据sin150.26,cos150.97,tan150.27,1.73)20(8分)如图,在平行四边形中,对角线,相交于点为的中点,连接交于点,且(1)求的长;(2)若,求21(8分)如图,和都是等腰直角三角形,的顶点与的斜边的中点重合,将绕点旋转,旋转过程中,线段与线段相交于点,射线与线段相交于点,与射线相交于点.(1)求证:;(2)求证:平分;(3)当,求的长.22(10分)如图,ABC中,E是AC上一点,且AE
6、=AB,BAC=2EBC ,以AB为直径的O交AC于点D,交EB于点F(1)求证:BC与O相切;(2)若AB=8,BE=4,求BC的长23(10分)如图,在ABC中,ABAC,以AB为直径作O交BC于点D,过点D作AC的垂线交AC于点E,交AB的延长线于点F(1)求证:DE与O相切;(2)若CDBF,AE3,求DF的长24(10分)如图,已知O经过ABC的顶点A、B,交边BC于点D,点A恰为的中点,且BD8,AC9,sinC,求O的半径25(12分)为了创建国家级卫生城区,某社区在九月份购买了甲、乙两种绿色植物共1100盆,共花费了27000元已知甲种绿色植物每盆20元,乙种绿色植物每盆30元
7、(1)该社区九月份购买甲、乙两种绿色植物各多少盆?(2)十月份,该社区决定再次购买甲、两种绿色植物已知十月份甲种绿色植物每盆的价格比九月份的价格优惠元,十月份乙种绿色植物每盆的价格比九月份的价格优惠因创卫需要,该社区十月份购买甲种绿色植物的数量比九月份的数量增加了,十为份购买乙种绿色植物的数量比九月份的数量增加了若该社区十月份的总花费与九月份的总花费恰好相同,求的值26如图,海中有两个小岛,某渔船在海中的处测得小岛D位于东北方向上,且相距,该渔船自西向东航行一段时间到达点处,此时测得小岛恰好在点的正北方向上,且相距,又测得点与小岛相距(1)求的值;(2)求小岛,之间的距离(计算过程中的数据不取
8、近似值)参考答案一、选择题(每题4分,共48分)1、C【分析】根据一次函数的性质判断出a、b的正负情况,再根据二次函数的性质判断出开口方向与对称轴,然后选择即可【详解】解:的图象经过二、三、四象限,抛物线开口方向向下,抛物线对称轴为直线,对称轴在y轴的左边,纵观各选项,只有C选项符合故选C【点睛】本题考查了二次函数的图象,一次函数的图象与系数的关系,主要利用了二次函数的开口方向与对称轴,确定出a、b的正负情况是解题的关键2、B【解析】x1,x1是一元二次方程的两根,x1+x1=1故选B3、B【分析】根据同一时刻物高与影长成正比可得出结论【详解】设竹竿的长度为x尺,太阳光为平行光,解得x45(尺
9、)故选:B【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键4、B【分析】连接,由矩形的性质得出,由线段垂直平分线的性质得出,设,则,在中,由勾股定理得出方程,解方程即可【详解】如图:连接,四边形是矩形,设,则,在中,由勾股定理得:,解得:,即;故选B【点睛】本题考查了矩形的性质、线段垂直平分线的性质、勾股定理;熟练掌握矩形的性质,由勾股定理得出方程是解题的关键5、D【分析】根据“一根绳子去量一根木条,绳子剩余4.5尺”可知:绳子木条=4.5,再根据“将绳子对折再量木条,木条剩余1尺”可知:木条绳子=1,据此列出方程组即可【详解】由题意可得,故选:D【点睛】本题
10、考查二元一次方程组的实际应用,解题的关键是明确题意,找出等量关系,列出相应的二元一次方程组6、C【分析】如图,设O与BC相切于点E,连接OE,作OP2AC垂足为P2交O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,如图当Q2在AB边上时,P2与A重合时,P2Q2最大值,由此不难解决问题【详解】解:如图,设O与BC相切于点E,连接OE,作OP2AC垂足为P2交O于Q2,此时垂线段OP2最短,P2Q2最小值为OQ2-OP2,AB=20,AC=8,BC=6,AB2=AC2+BC2,C=90,OP2A=90,OP2BCO为AB的中点,P2C=P2A,OP2=BC=2又BC是O的切线,O
11、EB=90,OEAC,又O为AB的中点,OE=AC=4=OQ2P2Q2最小值为OQ2-OP2=4-2=2,如图,当Q2在AB边上时,P2与A重合时,P2Q2经过圆心,经过圆心的弦最长,P2Q2最大值=AO+OQ2=5+4=9,PQ长的最大值与最小值的和是20故选:C【点睛】本题考查切线的性质,三角形中位线定理,勾股定理的逆定理以及平行线的判定等知识,解题的关键是正确找到点PQ取得最大值、最小值时的位置,属于中考常考题型7、C【分析】首先得出二次函数y=2x2+4x-3=2(x+1)2-5,再求出将二次函数y=2(x+1)2-5的图象向右平移2个单位的解析式,再求出向下平移1个单位的解析式即可y
12、=2(x-1)2-6,从而求解【详解】解: y=2x2+4x-3=2(x+1)2-5,将二次函数y=2(x+1)2-5的图象向右平移2个单位的解析式,再求出向下平移1个单位,y=2(x-1)2-6,顶点坐标为(1,-6)故选C【点睛】本题考查二次函数的平移性质8、B【分析】首先根据圆内接四边形的性质求得A的度数,然后根据解直角三角形的方法即可求解【详解】四边形ABCD内接于O,A18012060,BHAD,BHAHtan60=,故选:B【点睛】本题考查了圆内接四边形及勾股定理的知识,解题的关键是熟知解直角三角形的方法9、C【分析】根据垂径定理得出BC=AB,再根据勾股定理求出OC的长:【详解】
13、OCAB,AB=16,BC=AB=1在RtBOC中,OB=10,BC=1,故选C10、B【解析】试题解析:列表如下:123456123456723456783456789456789105678910116789101112从列表中可以看出,所有可能出现的结果共有36种,且这些结果出现的可能性相等,其中点数的和为5的结果共有4种,点数的和为5的概率为:故选B考点:列表法与树状图法11、A【解析】试题分析:河堤横断面迎水坡AB的坡比是,即,BAC=30,AB=2BC=25=10,故选A考点:解直角三角形12、A【分析】根据点与圆的位置关系判断即可.【详解】点P到圆心的距离为3cm,而O的半径为4
14、cm,点P到圆心的距离小于圆的半径,点P在圆内,故选:A【点睛】此题考查的是点与圆的位置关系,掌握点与圆的位置关系的判断方法是解决此题的关键.二、填空题(每题4分,共24分)13、【分析】根据顶点式即可得到顶点坐标【详解】解:,抛物线的顶点坐标为(2,2),故答案为(2,2).【点睛】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x-h)2+k的顶点坐标为(h,k)是解题的关键14、1【分析】根据三角形中位线定理得到AC=2DE=5,ACDE,根据勾股定理的逆定理得到ACB=90,根据线段垂直平分线的性质得到DC=BD,根据三角形的周长公式计算即可【详解】D,E分别是AB,BC的
15、中点,AC=2DE=5,ACDE,AC2+BC2=52+122=169,AB2=132=169,AC2+BC2=AB2,ACB=90,ACDE,DEB=90,又E是BC的中点,直线DE是线段BC的垂直平分线,DC=BD,ACD的周长=AC+AD+CD=AC+AD+BD=AC+AB=1,故答案为1【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键15、【分析】先将括号乘开,再进行合并即可得出答案.【详解】x2-6x+4+x+1=0,.故答案为:.【点睛】本题考查了一次二次方程的化简,注意变号是解决本题的关键.16、或
16、【分析】由二次函数y=ax2+bx+c(a0)过点(-1,-2),(0,-2),可求得此抛物线的对称轴,又由此抛物线过点(1,0),即可求得此抛物线与x轴的另一个交点继而求得答案.【详解】解:二次函数y=ax2+bx+c(a0)过点(-1,-2),(0,-2),此抛物线的对称轴为:直线x=-,此抛物线过点(1,0),此抛物线与x轴的另一个交点为:(-2,0),ax2+bx+c=0的解为:x=-2或1故答案为x=-2或1.【点睛】此题考查了抛物线与x轴的交点问题此题难度适中,注意掌握二次函数的对称性是解此题的关键.17、0或1【解析】由于没有交待是二次函数,故应分两种情况:当k=0时,函数是一次
17、函数,与x轴仅有一个公共点当k0时,函数是二次函数,若函数与x轴仅有一个公共点,则有两个相等的实数根,即综上所述,若关于x的函数与x轴仅有一个公共点,则实数k的值为0或118、 (-1010,10102)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标【详解】A点坐标为(1,1),直线OA为y=x,A1(-1,1),A1A2OA,直线A1A2为y=x+2,解 得 或 ,A2(2,4),A3(-2,4),A3A4OA,直线A3A4为y
18、=x+6,解 得 或 ,A4(3,9),A5(-3,9),A2019(-1010,10102),故答案为(-1010,10102)【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键三、解答题(共78分)19、台灯的高约为45cm.【分析】如图,作DGAB,EFAB,交AB延长线于G、F,DHEF于H,可得四边形DGFH是矩形,可得DG=FH,根据A的余弦可求出AC的长,进而可得AD的长,根据A的正弦即可求出DG的长,由ADE=135可得EDH=15,根据DEH的正弦可得EH的长,根据EF=EH+FH求出EF的长即可得答案.【详解】如
19、图,作DGAB,EFAB,交AB延长线于G、F,DHEF于H,四边形DGFH是矩形,DG=FH,A=60,AB=16,AC=ABcos60=16=8,AD=AC+CD=8+40=48,DG=ADsin60=24,DHEF,AFEF,DH/AF,ADH=180-A=120,ADE=135,EDH=ADE-ADH=15,DE=15,EH=DEsin153.9,EF=EH+FH=EH+DG=24+3.945,答:台灯的高约为45cm.【点睛】本题主要考查解直角三角形的应用,正确应用锐角三角函数的关系是解题关键.20、(1)6;(2)4【分析】(1)连接EF,证明EFGDCG推出,求出DE即可解决问题
20、(2)由三角形的高相同,则三角形的面积之比等于底边之比,求出,即可求出答案【详解】解:(1)连接是平行四边形,点为的中点为的中点,且,;(2),BE=DE,【点睛】本题考查相似三角形的判定和性质,平行四边形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型21、(1)详见解析;(2)详见解析;(3)5.【分析】(1)由ABC和DEF是两个等腰直角三角形,易得BCDEF45,然后利用三角形的外角的性质,即可得BEPEQC,则可证得BPECEQ;(2)只要证明BPEEPQ,可得BEPEQP,且BEPCQE,可得结论;(3)由相似三角形的性质可求BE3EC,可求AP4,AQ3,即可求PQ的
21、长【详解】解:(1)和是两个等腰直角三角形,即,(2),,,,,且,,平分(3),且,.【点睛】本题考查相似形综合题、等腰直角三角形的性质,相似三角形的判定和性质,勾股定理等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题22、(1)证明见解析;(2)BC=【分析】(1)运用切线的判定,只需要证明ABBC即可,即证ABC=90. 连接AF,依据直径所对圆周角为90度,可以得到AFB=90,依据三线合一可以得到2BAF=BAC,再结合已知条件进行等量代换可得BAF=EBC,最后运用直角三角形两锐角互余及等量代换即可.(2)依据三线合一可以得到BF的长度,继而算出BAF=EBC的正弦值
22、,过E作EGBC于点G,利用三角函数可以解除EG的值,依据垂直于同一直线的两直线平行,可得EG与AB平行,从而得到相似三角形,依据相似三角形的性质可以求出AC的长度,最后运用勾股定理求出BC的长度.【详解】(1)证明:连接AFAB为直径, AFB=90又AE=AB,2BAF=BAC,FAB+FBA=90又BAC=2EBC,BAF=EBC,FAB+FBA=EBC+FBA=90ABC=90即ABBC,BC与O相切;(2)解:过E作EGBC于点G,AB=AE,AFB=90,BF=BE=4=2,sinBAF=,又BAF=EBC,sinEBC=又在EGB中,EGB=90,EG=BEsinEBC=4=1,
23、EGBC,ABBC,EGAB,CEGCAB,CE=,AC=AE+CE=8+=在RtABC中,BC=【点睛】本题考查了切线的判定定理,相似三角形的判定及性质,等腰三角形三线合一的性质,锐角三角函数等知识,作辅助线构造熟悉图形,实现角或线段的转化是解题的关键.23、(1)见解析;(2)DF2【分析】(1)连接OD,求出ACOD,求出ODDE,根据切线的判定得出即可;(2)求出1=2=F=30,求出AD=DF,解直角三角形求出AD,即可求出答案【详解】(1)证明:连接OD,AB是O的直径,ADB90,ADBC,又ABAC,12,OAOD,2ADO,1ADO,ODAC,DEAC,ODFAED90,ODED,OD过O,DE与O相切;(2)解:ABAC,ADBC,12,CDBD,CDBF,BFBD,3F,43+F23,OBOD,ODB423,ODF90,3F30,4ODB60,ADB90,2130,2F,DFAD,130,AED90,AD2ED,AE2+DE2AD2,AE3,AD2,DF2【点睛】本题考查了等腰三角形的性质,三角形的外角性质,圆周角定理,切线的判定定理,解直角三角形等知识点,能综合运用定理进行推理是解此题的关键24、O的半径为【解析】如图,连接OA交BC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 事业单位员工合同协议书
- 企业资产购置合同模板
- 机构用工合同协议书
- 实验室合作协议范本
- 工业厂房租赁合同标准文本
- 期货交易数据服务协议
- 广东省室内装潢设计工程施工合同示例
- 保安服务合同协议书范本
- 房屋翻新合同的范本
- 广东省批发花卉选购合同
- 人教版数学七年级上册动点专题讲义
- 安全生产隐患识别图集 问题图片和整改图片对比 危险源识别(中)
- OSA患者围术期管理的专家共识
- 陕西省西安市碑林区2023-2024学年三年级上学期期中数学试卷
- 河北省沧衡八校联盟2023-2024学年高二上学期11月期中数学试题
- 我的家乡湖北咸宁介绍
- 幼教培训课件:《幼儿园班级区域创设》
- 行政办公室行政办公管理检查开展情况汇报
- 大课间跑操评分表
- 老旧小区改造室外给排水工程施工方案和技术措施
- 食品的感官检验-感官检验的常用方法(食品检测技术课件)
评论
0/150
提交评论