![广西崇左市江州区2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第1页](http://file4.renrendoc.com/view/97b84ca6176f273efda13dac4c8da6de/97b84ca6176f273efda13dac4c8da6de1.gif)
![广西崇左市江州区2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第2页](http://file4.renrendoc.com/view/97b84ca6176f273efda13dac4c8da6de/97b84ca6176f273efda13dac4c8da6de2.gif)
![广西崇左市江州区2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第3页](http://file4.renrendoc.com/view/97b84ca6176f273efda13dac4c8da6de/97b84ca6176f273efda13dac4c8da6de3.gif)
![广西崇左市江州区2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第4页](http://file4.renrendoc.com/view/97b84ca6176f273efda13dac4c8da6de/97b84ca6176f273efda13dac4c8da6de4.gif)
![广西崇左市江州区2023学年数学九年级第一学期期末质量跟踪监视试题含解析_第5页](http://file4.renrendoc.com/view/97b84ca6176f273efda13dac4c8da6de/97b84ca6176f273efda13dac4c8da6de5.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1某车的刹车距离y(m)与开始刹车时的速度x(m/s)之间满足二次函数(x0),若该车某次的刹车距离为5 m,则开始刹车时的速度为( )A40 m/sB20 m/sC10 m/sD5 m/s2把二次函数化为的形式是ABCD3若圆锥的侧面积等于其底面积的3倍
2、,则该圆锥侧面展开图所对应扇形圆心角的度数为( )A60B90C120D1804圆锥的底面半径是5cm,侧面展开图的圆心角是180,圆锥的高是()A5cmB10cmC6cmD5cm5如图,在中,点是边上的一个动点,以为直径的圆交于点,若线段长度的最小值是4,则的面积为( )A32B36C40D486如图,直线分别与相切于,且,连接,若,则梯形的面积等于( )A64B48C36D247若关于的一元二次方程的两个实数根是和3,那么对二次函数的图像和性质的描述错误的是( )A顶点坐标为(1,4)B函数有最大值4C对称轴为直线D开口向上8若点 A(1,y1),B(1,y2),C(3,y3)在反比例函数
3、 y5x的图象上,则 y1,y2,y3 Ay1y2y3By2y1y3Cy2y3y1Dy3y2y19一元二次方程配方后可化为( )ABCD10下列对二次函数的图象的描述,正确的是( )A开口向下B对称轴是轴C当时,有最小值是D在对称轴左侧随的增大而增大11如图,将ABC放在每个小正方形的边长都为1的网格中,点A,B,C均在格点上,则tanA的值是()ABC2D12某中学组织初三学生足球比赛,以班为单位,每两班之间都比赛一场,计划安排场比赛,则参加比赛的班级有( )A个B个C个D个二、填空题(每题4分,共24分)13如图,抛物线解析式为yx2,点A1的坐标为(1,1),连接OA1;过A1作A1B1
4、OA1,分别交y轴、抛物线于点P1、B1;过B1作B1A2A1B1分别交y轴、抛物线于点P2、A2;过A2作A2B2B1A2,分别交y轴、抛物线于点P3、B2;则点Pn的坐标是_14已知两个相似三角形的相似比为25,其中较小的三角形面积是,那么另一个三角形的面积为 15如图,在菱形ABCD中,B=60,E是CD上一点,将ADE折叠,折痕为AE,点D的对应点为点D,AD与BC交于点F,若F为BC中点,则AED=_.16为了提高学校的就餐效率,巫溪中学实践小组对食堂就餐情况进行调研后发现:在单位时间内,每个窗口买走午餐的人数和因不愿长久等待而到小卖部的人数各是一个固定值,并且发现若开一个窗口,45
5、分钟可使等待的人都能买到午餐,若同时开2个窗口,则需30分钟.还发现,若能在15分钟内买到午餐,那么在单位时间内,去小卖部就餐的人就会减少80%.在学校总人数一定且人人都要就餐的情况下,为方便学生就餐,总务处要求食堂在10分钟内卖完午餐,至少要同时开多少_个窗口.17已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:;当时,正确的是_(填写序号)18如图,已知ABC的三个顶点均在格点上,则cosA的值为_三、解答题(共78分)19(8分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,
6、且CD=4AC(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的动点,若ACE的面积的最大值为,求a的值;(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由20(8分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,连接(1)求反比例函数与一次函数的解析式;(2)求的面积21(8分)全国第二届青年运动会是山西省历史上第一次举办的大型综合性运动会,太原作为主赛区,新建了很多场馆,其中在汾河东岸落成了太原水上运动中
7、心,它的终点塔及媒体中心是一个以“大帆船”造型(如图1),外观极具创新,这里主要承办赛艇、皮划艇、龙舟等项目的比赛.“青春”数学兴趣小组为了测量“大帆船”AB的长度,他们站在汾河西岸,在与AB平行的直线l上取了两个点C、D,测得CD=40m,CDA=110,ACB=18.5,BCD=16.5,如图1请根据测量结果计算“大帆船”AB的长度(结果精确到0.1m,参考数据:sin16.50.45,tan16.50.50,1.41,1.73)22(10分)对于二次函数yx23x+2和一次函数y2x+4,把yt(x23x+2)+(1t)(2x+4)称为这两个函数的“再生二次函数”,其中t是不为零的实数,
8、其图象记作抛物线L现有点A(2,0)和抛物线L上的点B(1,n),请完成下列任务:(尝试)(1)当t2时,抛物线yt(x23x+2)+(1t)(2x+4)的顶点坐标为 ;(2)判断点A是否在抛物线L上;(3)求n的值;(发现)通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 (应用)二次函数y3x2+5x+2是二次函数yx23x+2和一次函数y2x+4的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由23(10分)某校九年级数学兴趣小组为了测得该校地下停车场的限高CD,在课外活动时间测得下列数据:如图,从地面E点测得地下停车场的俯角为30,斜坡AE
9、的长为16米,地面B点(与E点在同一个水平线)距停车场顶部C点(A、C、B在同一条直线上且与水平线垂直)2米试求该校地下停车场的高度AC及限高CD(结果精确到0.1米,1.732)24(10分)姐妹两人在50米的跑道上进行短路比赛,两人从出发点同时起跑,姐姐到达终点时,妹妹离终点还差3米,已知姐妹两人的平均速度分别为a米/秒、b米/秒(1)如果两人重新开始比赛,姐姐从起点向后退3米,姐妹同时起跑,两人能否同时到达终点?若能,请求出两人到达终点的时间;若不能,请说明谁先到达终点(2)如果两人想同时到达终点,应如何安排两人的起跑位置?请你设计两种方案25(12分)甲、乙两名队员参加射击训练,每人射
10、击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a771.2乙7b8c(1)a_;b_;c_;(2)填空:(填“甲”或“乙”)从平均数和中位数的角度来比较,成绩较好的是_;从平均数和众数的角度来比较,成绩较好的是_;成绩相对较稳定的是_26(1)计算:(2)如图是一个几何体的三视图,根据图示的数据求该几何体的表面积参考答案一、选择题(每题4分,共48分)1、C【解析】当y=5时,则,解之得(负值舍去),故选C2、B【分析】利用配方法先提出二次项系数,在加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式【详解】原式(x24x4)(x24x4
11、8)(x2)22故选:B【点睛】此题考查了二次函数一般式与顶点式的转换,解答此类问题时只要把函数式直接配方即可求解3、C【详解】解:设母线长为R,底面半径为r,可得底面周长=2r,底面面积=r2,侧面面积=lr=rR,根据圆锥侧面积恰好等于底面积的3倍可得3r2=rR,即R=3r.根据圆锥的侧面展开图的弧长等于圆锥的底面周长,设圆心角为n,有,即.可得圆锥侧面展开图所对应的扇形圆心角度数n=120故选C考点:有关扇形和圆锥的相关计算4、A【解析】设圆锥的母线长为R,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到25=,然后解方程即可母线
12、长,然后利用勾股定理求得圆锥的高即可【详解】设圆锥的母线长为R,根据题意得25,解得R1即圆锥的母线长为1cm,圆锥的高为:5cm故选:A【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长5、D【分析】连接BQ,证得点Q在以BC为直径的O上,当点O、Q、A共线时,AQ最小,在中,利用勾股定理构建方程求得O的半径R,即可解决问题.【详解】如图,连接BQ,PB是直径,BQP=90,BQC=90,点Q在以BC为直径的O上,当点O、Q、A共线时,AQ最小,设O的半径为R,在中,即,解得:,故选:D【点睛】本题考查了圆周角定理,勾股定理,
13、三角形面积公式解决本题的关键是确定Q点运动的规律,从而把问题转化为圆外一点到圆上一点的最短距离问题6、B【分析】先根据切线长定理得出,然后利用面积求出OF的长度,即可得到圆的半径,最后利用梯形的面积公式 即可求出梯形的面积【详解】连接OF,直线分别与相切于, 在 和 中, ,在 和 中, , , , , , ,梯形的面积为 故选:B【点睛】本题主要考查切线的性质,切线长定理,梯形的面积公式,掌握切线的性质和切线长定理是解题的关键7、D【分析】由题意根据根与系数的关系得到a0,根据二次函数的性质即可得到二次函数y=a(x-1)2+1的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时
14、,函数有最大值1【详解】解:关于x的一元二次方程的两个实数根是-1和3,-a=-1+3=2,a=-20,二次函数的开口向下,对称轴为直线x=1,顶点坐标为(1,1),当x=1时,函数有最大值1,故A、B、C叙述正确,D错误,故选:D【点睛】本题考查二次函数的性质,根据一元二次方程根与系数的关系以及根据二次函数的性质进行分析是解题的关键8、C【解析】将点A(-1,y1),B(1,y2),C(3,y3)分别代入反比例函数y5x,并求得y1、y2【详解】根据题意,得y1=-5-1=5,即y1=5,y2=-51=-5,即y2=-5,y3=-53=-53,即【点睛】本题考查的知识点是反比例函数图象上点的
15、坐标特征,解题关键是熟记点的横纵坐标满足反比例函数的解析式9、B【分析】根据一元二次方程配方法即可得到答案.【详解】解:x2+4x=3 x2+4x+4=3+4(x+2)2=7故选B【点睛】此题主要考查了解一元二次方程的配方法,熟练掌握一元二次方程各种解法是解题的关键.10、C【分析】根据二次函数的性质分别判断后即可确定正确的选项【详解】解:A、a=10,抛物线开口向上,选项A不正确;B、-=,抛物线的对称轴为直线x=,选项B不正确;C、当x=时,y=-,当x=时,y有最小值是-,选项C正确;D、a0,抛物线的对称轴为直线x=,当x时,y随x值的增大而增大,选项D不正确故选:C【点睛】本题考查了
16、二次函数的性质以及二次函数的图象,利用二次函数的性质逐一分析四个选项的正误是解题的关键11、D【解析】首先构造以A为锐角的直角三角形,然后利用正切的定义即可求解【详解】连接BD,则BD,AD2,则tanA故选D【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边,构造直角三角形是本题的关键12、C【分析】设共有x个班级参赛,根据每两班之间都比赛一场可知每个班要进行(x-1)场比赛,根据计划安排场比赛列方程求出x的值即可得答案【详解】设共有x个班级参赛,每两班之间都比赛一场,每个班要进行(x-1)场比赛,计划安排场比赛,解得:x1=
17、5,x2=-4(不合题意,舍去),参加比赛的班级有5个,故选:C【点睛】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程此题还要判断所求的解是否符合题意,舍去不合题意的解二、填空题(每题4分,共24分)13、(0,n2+n)【分析】根据待定系数法分别求得直线OA1、A2B1、A2B2的解析式,即可求得P1、P2、P3的坐标,得出规律,从而求得点Pn的坐标【详解】解:点A1的坐标为(1,1),直线OA1的解析式为yx,A1B1OA1,OP12,P1(0,2),设A1P1的解析式为ykx+b1,解得,直线A1P1的解析式为yx+2,解求得B1(2,4),A2B1OA1
18、,设B1P2的解析式为yx+b2,2+b24,b26,P2(0,6),解求得A2(3,9)设A1B2的解析式为yx+b3,3+b39,b312,P3(0,12),Pn(0,n2+n),故答案为(0,n2+n)【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,待定系数法求一次函数的解析式,根据一次函数图象上点的坐标特征得出规律是解题的关键14、25【解析】试题解析:两个相似三角形的相似比为2:5,面积的比是4:25,小三角形的面积为4,大三角形的面积为25.故答案为25.点睛:相似三角形的面积比等于相似比的平方.15、75【分析】如图(见解析),连接AC,易证是等边三角形,从而可得,
19、又由可得,再根据折叠的性质得,最后在中利用三角形的内角和定理即可得.【详解】如图,连接AC在菱形ABCD中,是等边三角形F为BC中点(等腰三角形三线合一的性质),即(两直线平行,同旁内角互补)又由折叠的性质得:在中,由三角形的内角和定理得:故答案为:.【点睛】本题是一道较好的综合题,考查了菱形的性质、等边三角形的性质、平行线的性质、图形折叠的性质、三角形的内角和定理,利用三线合一的性质证出是解题关键.16、9【分析】设每个窗口每分钟能卖人的午餐,每分钟外出就餐有人,学生总数为人,并设要同时开个窗口,根据并且发现若开1个窗口,45分钟可使等待人都能买到午餐;若同时开2个窗口,则需30分钟.还发现
20、,若在15分钟内等待的学生都能买到午餐,在单位时间内,外出就餐的人数可减少80%.在学校学生总人数不变且人人都要就餐的情况下,为了方便学生就餐,调查小组建议学校食堂10分钟内卖完午餐,可列出不等式求解.【详解】解:设每个窗口每分钟能卖人的午餐,每分钟外出就餐有人,学生总数为人,并设要同时开个窗口,依题意有,由、得,代入得,所以.因此,至少要同时开9个窗口.故答案为:9【点睛】考查一元一次不等式组的应用;一些必须的量没有时,应设其为未知数;当题中有多个未知数时,应利用相应的方程用其中一个未知数表示出其余未知数;得到20分钟个窗口卖出午餐数的关系式是解决本题的关键17、【解析】首先根据二次函数图象
21、开口方向可得 ,根据图象与y轴交点可得,再根据二次函数的对称轴,结合a的取值可判定出b0,根据a,b,c的正负即可判断出的正误;把代入函数关系式,再根据对称性判断出的正误;把 中即可判断出的正误;利用图象可以直接看出的正误【详解】解:根据图象可得: ,对称轴: , 故正确;把 代入函数关系式 由抛物线的对称轴是直线,可得当 故错误; 即: 故正确;由图形可以直接看出正确故答案为【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握二次项系数a决定抛物线的开口方向,当 时,抛物线向上开口;当 时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即),对称轴
22、在y轴左侧; 当a与b异号时(即),对称轴在y轴右侧(简称:左同右异);常数项c决定抛物线与y轴交点,抛物线与y轴交于18、【解析】连接BD,根据勾股定理的逆定理判断出ABD的形状,再由锐角三角函数的定义即可得出结论【详解】解:如图,连接BD,BD2=12+12=2,AB2=12+32=10,AD2=22+22=8,2+8=10,ABD是直角三角形,且ADB=90,故答案为:.【点睛】本题主要考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键三、解答题(共78分)19、(1)A(1,0),;(2);(3)P的坐标为(1,)或(1,4)【分析】(1)在中,令y=0,得到
23、,得到A(1,0),B(3,0),由直线l经过点A,得到,故,令,即,由于CD4AC,故点D的横坐标为4,即有,得到,从而得出直线l的函数表达式;(2)过点E作EFy轴,交直线l于点F,设E(,),则F(,),EF=,SACESAFESCFE,故ACE的面积的最大值为,而ACE的面积的最大值为,所以 ,解得;(3)令,即,解得,得到D(4,5a),因为抛物线的对称轴为,设P(1,m),然后分两种情况讨论:若AD是矩形的一条边,若AD是矩形的一条对角线【详解】解:(1)=,令y=0,得到,A(1,0),B(3,0),直线l经过点A,令,即,CD4AC,点D的横坐标为4,直线l的函数表达式为;(2
24、)过点E作EFy轴,交直线l于点F,设E(,),则F(,),EF=,SACESAFESCFE ,ACE的面积的最大值为,ACE的面积的最大值为, ,解得;(3)令,即,解得,D(4,5a),抛物线的对称轴为,设P(1,m),若AD是矩形的一条边,则Q(4,21a),m21a5a26a,则P(1,26a),四边形ADPQ为矩形,ADP90,即 ,P1(1,);若AD是矩形的一条对角线,则线段AD的中点坐标为( ,),Q(2,),m,则P(1,8a),四边形APDQ为矩形,APD90,即 ,P2(1,4)综上所述,以点A、D、P、Q为顶点的四边形能成为矩形,点P的坐标为(1,)或(1,4)考点:二
25、次函数综合题20、(1)y1x1,;(2)14【分析】(1)将分别代入两个函数解析式得到方程组,解方程组后即可得出函数解析式;(2)根据勾股定理得出ODOA5,根据题意得出,OC1,CD4;最后根据SABDSDCBSDCA即可得出答案【详解】解:(1)由题意得, 解得, y1x1,(2)由勾股定理得,A(3,4)OA,ODOA5,当y10时,0 x1x1,OC1,CD4SABDSDCBSDCA【点睛】本题考查了反比例函数与一次函数的交点问题,代入求值法是解题的关键21、 “大帆船”AB的长度约为94.8m【分析】分别过点A、B作直线l的垂线,垂足分别为点E、F,设DE=xm,得BF= AE=C
26、E=( x +40)m,AE=x ,列出方程,求出x的值,进而即可求解【详解】分别过点A、B作直线l的垂线,垂足分别为点E、F, 设DE=xm,易知四边形ABFE是矩形, AB=EF,AE=BF DCA=ACB+BCD=18.5+16.5=45, BF= AE=CE=( x +40)m CDA=110, ADE=60 AE= xtan60=x , x= x +40 , 解得: x54.79(m) BF= CE =54.79+40=94.79(m) CF=189.58(m) EF= CF- CE=189.58-94.7994.8(m) AB=94.8(m)答:“大帆船”AB的长度约为94.8m【
27、点睛】本题主要考查三角函数的实际应用,添加辅助线,构造直角三角形,熟练掌握三角函数的定义,是解题的关键22、 尝试(1)(1,2);(2)点A在抛物线L上;(3)n=1;发现(2,0),(1,1);应用不是,理由见解析【分析】尝试(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;(2)将点A的坐标代入抛物线L直接进行验证即可;(3)已知点B在抛物线L上,将该点坐标代入抛物线L的解析式中直接求解,即可得到n的值发现将抛物线L展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标应用将发现中得到的两个定点坐标代入二次函数y=
28、-3x2+5x+2中进行验证即可【详解】解:尝试(1)将t2代入抛物线L中,得:yt(x23x+2)+(1t)(2x+4)2x24x2(x1)22,此时抛物线的顶点坐标为:(1,2)(2)将x2代入yt(x23x+2)+(1t)(2x+4),得 y0,点A(2,0)在抛物线L上(3)将x1代入抛物线L的解析式中,得:nt(x23x+2)+(1t)(2x+4)1发现将抛物线L的解析式展开,得:yt(x23x+2)+(1t)(2x+4)t(x2)(x+1)2x+4当x=2时,y=0,当x=-1时,y=1,与t无关,抛物线L必过定点(2,0)、(1,1)应用将x2代入y3x2+5x+2,y0,即点A
29、在抛物线上将x1代入y3x2+5x+2,计算得:y11,即可得抛物线y3x2+5x+2不经过点B,二次函数y3x2+5x+2不是二次函数yx23x+2和一次函数y2x+4的一个“再生二次函数”【点睛】本题考查二次函数的新型定义问题,熟练掌握二次函数的图像与性质,理解“再生二次函数”的定义是解题的关键.23、AC=6米;CD=5.2米.【分析】根据题意和正弦的定义求出AB的长,根据余弦的定义求出CD的长【详解】解:由题意得,ABEB,CDAE,CDAEBA90,E30,ABAE8米,BC2米,ACABBC6米,DCA90DAC30,CDACcosDCA65.2(米)【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握特殊角的函数值,能根据题意做构建直角三角形,熟练掌握直角三角形的边角关系.24、(1)姐姐用时秒,妹妹用时秒,所以不能同时到,姐姐先到;(2)姐姐后退米或妹妹前进3米【分析】(1)先求出姐姐和妹妹的速度关系,然后求出再次比赛时两人用的时间,从而得出结论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度电力设施维护驾驶员聘用合同
- 二零二五年度游泳池门票销售与员工劳动合同3篇
- 二零二五年度桥梁维护用钢板租赁合同模板3篇
- 2025年度啤酒经销商节日促销活动策划与执行合同
- 喷枪在酒店装饰涂装的应用考核试卷
- 技术服务财务舞弊防范考核试卷
- 建筑石材在高端住宅区的设计风格考核试卷
- 云母制品在新能源汽车电池材料中的应用考核试卷
- 医疗设备租赁业务风险防范考核试卷
- 体育场地室内泳池加温系统安装考核试卷
- 2025年新能源汽车销售佣金返点合同范本6篇
- 食材配送公司机构设置及岗位职责
- 2023年版一级建造师-水利工程实务电子教材
- 房地产工程管理 -中建八局机电工程质量通病治理办法
- GB/T 6403.4-2008零件倒圆与倒角
- GB/T 2518-2019连续热镀锌和锌合金镀层钢板及钢带
- 企业合规管理-课件
- 火电厂安全工作规程
- GB∕T 33047.1-2016 塑料 聚合物热重法(TG) 第1部分:通则
- 特发性肺纤维化IPF
- FIDIC国际合同条款中英文对照.doc
评论
0/150
提交评论