版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C有一个实数根D没有实数根2为了估计水塘中的鱼数,养鱼者先从鱼塘中捕获30条鱼,在每一条鱼身上做好标记后把这些鱼放归鱼塘,再从鱼塘中打捞鱼。通过多次实验后发现捕捞的鱼中有作记号的频率稳定在2.5%左右,则鱼塘中鱼的条数估计为( )A600条B
2、1200条C2200条D3000条3在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m其行走路线如图所示,第1次移动到A1,第2次移动到A2,第n次移动到An则OA2A2018的面积是()A504m2Bm2Cm2D1009m24某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A110B19C15如图,在圆内接四边形ABCD中,A:C1:2,则A的度数等于()A30B45C60D
3、806在如图所示的平面直角坐标系中,OA1B1是边长为2的等边三角形,作B2A2B1与OA1B1关于点B1成中心对称,再作B2A3B3与B2A2B1关于点B2成中心对称,如此作下去,则B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是( )A(4n1,)B(2n1,)C(4n+1,)D(2n+1,)7如图,小明要测量河内小岛B到河边公路l的距离,在A点测得,在C点测得,又测得米,则小岛B到公路l的距离为( )米A25BCD8如图,A、B、C三点在O上,且AOB=80,则ACB等于A100B80C50D409如图,O是ABC的外接圆,OCB40,则A的大小为()A40B50C80D
4、10010已知,点是线段上的黄金分割点,且,则的长为( )ABCD二、填空题(每小题3分,共24分)11如图,已知ABC的三个顶点均在格点上,则cosA的值为_12如图,平面直角坐标系中,P与x轴分别交于A、B两点,点P的坐标为(3,1),AB2 将P沿着与y轴平行的方向平移,使P与轴相切,则平移距离为_ 13从五个数1,2,3,4,5中随机抽出1个数 ,则数3被抽中的概率为_14若关于x的方程x2+3x+a=0有一个根为1,则另一个根为_15用一个圆心角为150,半径为8的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_16如图,圆锥的底面半径OB6cm,高OC8cm,则该圆锥的侧面积是_c
5、m117如图,在平面直角坐标系中,已知点A(1,0),B(1a,0),C(1+a,0)(a0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足BPC=90,则a的最大值是_18两块大小相同,含有30角的三角板如图水平放置,将CDE绕点C按逆时针方向旋转,当点E的对应点E恰好落在AB上时,CDE旋转的角度是_度三、解答题(共66分)19(10分)我国于2019年6月5日首次完成运载火箭海.上发射,这标志着我国火箭发射技术达到了一个崭新的高度.如图,运载火箭从海面发射站点处垂直海面发射,当火箭到达点处时,海岸边处的雷达站测得点到点的距离为千米,仰角为.火箭继续直线上升到达点处,此时海岸
6、边处的雷达测得点的仰角增加,求此时火箭所在点处与处的距离 (保留根号)20(6分)如图,ABC中,AB=8,AC=6.(1)请用尺规作图的方法在AB上找点D ,使得 ACDABC(保留作图痕迹,不写作法)(2)在(1)的条件下,求AD的长21(6分)如图,已知四边形ABCD内接于O,A是的中点,AEAC于A,与O及CB的延长线交于点F,E,且.(1)求证:ADCEBA;(2)如果AB8,CD5,求tanCAD的值22(8分)如图,AB是O的直径,AC是O的弦,BAC的平分线交O于点D,过点D作DEAC交AC的延长线于点E,连接BD(1)求证:DE是O的切线;(2)若BD3,AD4,则DE 23
7、(8分)已知在平面直角坐标系中,抛物线与x轴相交于点A,B,与y轴相交于点C,直线y=x+4经过A,C两点,(1)求抛物线的表达式;(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQAO,PQ=2AO,求P,Q的坐标;(3)动点M在直线y=x+4上,且ABC与COM相似,求点M的坐标24(8分)用适当的方法解方程:(1)x2+2x=0(2)x24x+1=025(10分)如图,直线y=2x-6与反比例函数的图象交于点A(4,2),与x轴交于点B(1)求k的值及点B的坐标;(2)求OAB的面积26(10分)如图,点A(1,m2)、点B(2,m1)是函数y(其中x0)图象上的两点(1)求点A、
8、点B的坐标及函数的解析式;(2)连接OA、OB、AB,求AOB的面积参考答案一、选择题(每小题3分,共30分)1、A【分析】计算判别式即可得到答案.【详解】=方程有两个不相等的实数根,故选:A.【点睛】此题考查一元二次方程根的情况,正确掌握判别式的三种情况即可正确解题.2、B【分析】由题意已知鱼塘中有记号的鱼所占的比例,用样本中的鱼除以鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数【详解】解:302.5%=1故选:B【点睛】本题考查统计中用样本估计总体的思想,熟练掌握并利用样本总量除以所求量占样本的比例即可估计总量3、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A20
9、18=1009-1=1008,据此利用三角形的面积公式计算可得【详解】由题意知OA4n=2n,OA2016=20162=1008,即A2016坐标为(1008,0),A2018坐标为(1009,1),则A2A2018=10091=1008(m),A2A2018A1A210081504(m2).故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得4、A【解析】试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码),故答案选A.考点:概率.5、C【分析】设A、C分别为x、2x
10、,然后根据圆的内接四边形的性质列出方程即可求出结论【详解】解:设A、C分别为x、2x,四边形ABCD是圆内接四边形,x+2x180,解得,x60,即A60,故选:C【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键6、C【解析】试题分析:OA1B1是边长为2的等边三角形,A1的坐标为(1,),B1的坐标为(2,0),B2A2B1与OA1B1关于点B1成中心对称,点A2与点A1关于点B1成中心对称,221=3,20=,点A2的坐标是(3,),B2A3B3与B2A2B1关于点B2成中心对称,点A3与点A2关于点B2成中心对称,243=5,20()=,点A3的坐标是(
11、5,),B3A4B4与B3A3B2关于点B3成中心对称,点A4与点A3关于点B3成中心对称,265=7,20=,点A4的坐标是(7,),1=211,3=221,5=231,7=231,An的横坐标是2n1,A2n+1的横坐标是2(2n+1)1=4n+1,当n为奇数时,An的纵坐标是,当n为偶数时,An的纵坐标是,顶点A2n+1的纵坐标是,B2nA2n+1B2n+1(n是正整数)的顶点A2n+1的坐标是(4n+1,)故选C考点:坐标与图形变化-旋转7、B【详解】解:过点B作BEAD于E设BE=xBCD=60,tanBCE,在直角ABE中,AE=,AC=50米,则,解得即小岛B到公路l的距离为,故
12、选B.8、D【解析】试题分析:ACB和AOB是O中同弧所对的圆周角和圆心角,且AOB=80,ACB=AOB=40故选D9、B【解析】试题分析:OBOC,OCB40,BOC1802OCB100,由圆周角定理可知:ABOC50故选B10、A【分析】根据黄金分割点的定义和得出,代入数据即可得出AP的长度【详解】解:由于P为线段AB2的黄金分割点,且,则故选:A【点睛】本题考查了黄金分割应该识记黄金分割的公式:较短的线段原线段的,较长的线段原线段的二、填空题(每小题3分,共24分)11、【解析】连接BD,根据勾股定理的逆定理判断出ABD的形状,再由锐角三角函数的定义即可得出结论【详解】解:如图,连接B
13、D,BD2=12+12=2,AB2=12+32=10,AD2=22+22=8,2+8=10,ABD是直角三角形,且ADB=90,故答案为:.【点睛】本题主要考查了锐角三角函数和勾股定理,作出适当的辅助线构建直角三角形是解答此题的关键12、1或1【分析】过点P作PCx轴于点C,连接PA,由垂径定理得P的半径为2,因为将P沿着与y轴平行的方向平移,使P与轴相切,分两种情况进行讨论求值即可由【详解】解:过点P作PCx轴于点C,连接PA,AB,点P的坐标为(1,1),PC=1,将P沿着与y轴平行的方向平移,使P与轴相切,当沿着y轴的负方向平移,则根据切线定理得:PC=PA=2即可,因此平移的距离只需为
14、1即可;当沿着y轴正方向移动,由可知平移的距离为即可故答案为1或1【点睛】本题主要考查圆的基本性质及切线定理,关键是根据垂径定理得到圆的半径,然后进行分类讨论即可13、 【解析】分析:直接利用概率公式求解即可求出答案.详解:从1,2,3,4,5中随机取出1个不同的数,共有5种不同方法,其中3被抽中的概率为.故答案为.点睛:本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.14、-2【解析】试题解析:由韦达定理可得, 故答案为 15、【分析】根据扇形条件计算出扇形弧长,由此得到其所围成的圆锥的底面圆周长,由圆的周长公式计算底面圆的半径【详解】圆心角为150,半径为8扇形弧
15、长:其围成的圆锥的底面圆周长为:设底面圆半径为则,得故答案为:【点睛】本题考查了扇形弧长的计算,及扇形与圆锥之间的对应关系,熟知以上内容是解题的关键16、60【分析】先利用勾股定理求出BC的长度,然后利用扇形的面积公式求解即可【详解】解:它的底面半径OB6cm,高OC8cmBC10(cm),圆锥的侧面积是:(cm1)故答案为:60【点睛】本题主要考查勾股定理及扇形的面积公式,掌握勾股定理及扇形的面积公式是解题的关键17、1【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出D上到点A的最大距离即可解决问题【详解】A(1,0),B(1a,0),C(1+a,0)(a0),AB=1
16、(1a)=a,CA=a+11=a,AB=AC,BPC=90,PA=AB=AC=a,如图延长AD交D于P,此时AP最大,A(1,0),D(4,4),AD=5,AP=5+1=1,a的最大值为1故答案为1【点睛】圆外一点到圆上一点的距离最大值为点到圆心的距离加半径,最小值为点到圆心的距离减去半径18、1【分析】根据旋转性质及直角三角形两锐角互余,可得ECB是等边三角形,从而得出ACE的度数,再根据ACE+ACE=90得出CDE旋转的度数【详解】解:根据题意和旋转性质可得:CE=CE=BC,三角板是两块大小一样且含有1的角,B=60ECB是等边三角形,BCE60,ACE90601,故答案为:1【点睛】
17、本题考查了旋转的性质、等边三角形的判定和性质,本题关键是得到ABC等边三角形三、解答题(共66分)19、火箭所在点处与处的距离【分析】在RTAMN中根据30角的余弦值求出AM和MN的长度,再在RTBMN中根据45角的求出BM的长度,即可得出答案.【详解】解:在中,在中,,答:火箭所在点处与处的距离.【点睛】本题考查解直角三角形,难度适中,解题关键是根据题目意思构造出直角三角形,再利用锐角三角函数进行求解.20、(1)见图(2)AD=.【解析】(1)图形见详解,(2)根据相似列比例式即可求解.【详解】解:(1)见下图(2)ACDABC,AC:AB=AD:AC,AB=8,AC=6,AD=.【点睛】
18、本题考查了尺规作图和相似三角形的性质,中等难度,熟悉尺规作图步骤和相似三角形的性质是解题关键.21、(1)详见解析;(2).【分析】(1)欲证ADCEBA,只要证明两个角对应相等就可以可以转化为证明且就可以;(2)A是的中点,的中点,则AC=AB=8,根据CADABE得到CAD=AEC,求得AE,根据正切三角函数的定义就可以求出结论【详解】(1)证明:四边形ABCD内接于O,CDA=ABE,DCA=BAE,ADCEBA;(2)解:A是的中点,AB=AC=8,ADCEBA,CAD=AEC,即,AE=,tanCAD=tanAEC=考点:相似三角形的判定与性质;圆周角定理22、(1)见解析;(2)【
19、分析】(1)连接OD,如图,先证明ODAE,再利用DEAE得到ODDE,然后根据切线的判定定理得到结论;(2)证明ABDADE,通过线段比例关系求出DE的长.【详解】(1)证明:连接ODAD平分BACBADDACOAODBADODAODADACODAE ODEE180 DEAEE90ODE180E1809090,即ODDE点D在O上DE是O的切线.(2)AB是O的直径,ADB=90,AD平分BAC,BAD=DAE,在ABD和ADE中,ABDADE,,BD3,AD4,AB=5DE=.【点睛】本题考查了切线的判定定理,相似三角形的判定和性质,适当画出正确的辅助线是解题的关键.23、(1)(2)P点
20、坐标(5,),Q点坐标(3,)(3)M点的坐标为(,),(3,1)【解析】试题分析:(1)根据自变量与函数值的对应关系,可得A、C点坐标,根据待定系数法,可得函数解析式;(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案试题解析:(1)当x=0时,y=4,即C(0,4),当y=0时,x+4=0,解得x=4,即A(4,0),将A
21、、C点坐标代入函数解析式,得,解得,抛物线的表达式为;(2)PQ=2AO=8,又PQAO,即P、Q关于对称轴x=1对称,PQ=8,14=5,当x=5时,y=(5)2(5)+4=,即P(5,);1+4=3,即Q(3,);P点坐标(5,),Q点坐标(3,);(3)MCO=CAB=45,当MCOCAB时,即,CM=如图1,过M作MHy轴于H,MH=CH=CM=,当x=时,y=+4=,M(,);当OCMCAB时,即,解得CM=3,如图2,过M作MHy轴于H,MH=CH=CM=3,当x=3时,y=3+4=1,M(3,1),综上所述:M点的坐标为(,),(3,1)考点:二次函数综合题24、(1)x1=0,x2=2;(2)x1=2,x2=2【分析】根据方程的特点可适当选择解方程的方法,利用因式分解法、配方法解一元二次方程即可得到答案【详解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学语文工作计划范文
- 学生个人档案里的自我鉴定6篇
- 2024年规范化EPC总包协议格式
- 寒假日记大全(8篇)
- 有关公司年会策划方案范文汇编9篇
- 课外活动总结集锦15篇
- 《局外人》读书笔记12篇
- 中班元旦活动方案(15篇)
- 汽车实习报告范文汇编六篇
- 军训个人心得体会汇编15篇
- 公共卫生科工作总结范文(3篇)
- 《电子商务概论》课件
- 中国美术史智慧树知到答案章节测试2023年西北师范大学
- 管理ABC-干嘉伟美团网COO
- 洛阳白马寺景点介绍中文及英文
- 材料工程基础(山东联盟)智慧树知到答案章节测试2023年烟台大学
- 销售破冰话术
- 酒店预订系统
- 2023-2024学年河北省秦皇岛市小学数学五年级上册期末高分通关考试题
- 2023年银行安全保卫知识考试题库(含答案)
- YB/T 4090-2000超高功率石墨电极
评论
0/150
提交评论