陕西省商洛2023学年数学九上期末综合测试模拟试题含解析_第1页
陕西省商洛2023学年数学九上期末综合测试模拟试题含解析_第2页
陕西省商洛2023学年数学九上期末综合测试模拟试题含解析_第3页
陕西省商洛2023学年数学九上期末综合测试模拟试题含解析_第4页
陕西省商洛2023学年数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一

2、并交回。一、选择题(每小题3分,共30分)1如图,平行四边形ABCD中,E为AD的中点,已知DEF的面积为S,则四边形ABCE的面积为( ) A8SB9SC10SD11S2如图,AB为O的直径,点C、D在O上,BAC=50,则ADC为( )A40B50C80D1003下列说法正确的是( )经过三个点一定可以作圆;若等腰三角形的两边长分别为3和7,则第三边长是3或7;一个正六边形的内角和是其外角和的2倍;随意翻到一本书的某页,页码是偶数是随机事件;关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根ABCD4已知反比例函数,下列结论正确的是( )A图象在第二、四象限B当时,函数值随

3、的增大而增大C图象经过点D图象与轴的交点为5如图,在中,点分别在边上,且为边延长线上一点,连接,则图中与相似的三角形有( )个ABCD6如图,AB是O的直径,BT是O的切线,若ATB=45,AB=2,则阴影部分的面积是( ) A2B1C32-7下列图形中既是中心对称图形又是轴对称图形的是()ABCD8在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()ABCD19下列一元二次方程中有两个不相等的实数根的方程是( )A(x+2)20Bx2+30Cx2+2x-170Dx2+x+5010下列图形中,既是中心对称图形,又是轴对称图

4、形的是( )A BCD 二、填空题(每小题3分,共24分)11如图,已知点A是双曲线y在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边作等腰直角ABC,点C在第四象限随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y(k0)上运动,则k的值是_12如图,C=E=90,AC=3,BC=4,AE=2,则AD=_13用一个圆心角为的扇形作一个圆锥的侧面,若这个圆锥的底面半径恰好等于,则这个圆锥的母线长为_14抛物线y=(x-1)2-7的对称轴为直线_.15如图,已知点A的坐标为(4,0),点B的坐标为(0,3),在第一象限内找一点P(a,b) ,使PAB为等边三角形

5、,则2(a-b)=_16函数y=1的自变量x的取值范围是 17如图,ABC的顶点A、B、C都在边长为1的正方形网格的格点上,则sinA的值为_ 18如图所示是某种货号的直三棱柱(底面是等腰直角三角形)零件的三视图,则它的表面积为_三、解答题(共66分)19(10分)如图,矩形ABCD的对角线AC、BD交于点O,AOD60,AB,AEBD于点E,求OE的长20(6分)已知关于x的一元二次方程2x2(2k1)xk1(1)求证:方程总有两个实数根;(2)若该方程有一个根是正数,求k的取值范围21(6分)如图是某货站传送货物的平面示意图为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由

6、改为,已知原传送带长为米(1)求新传送带的长度;(2)如果需要在货物着地点的左侧留出2米的通道,试判断距离点5米的货物是否需要挪走,并说明理由(参考数据:,)22(8分)如图,点是正方形边.上一点,连接,作于点,于点,连接.(1)求证:;(2)己知,四边形的面积为,求的值. 23(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24(8分)数学兴趣小组几名同学到某商场调查发现,一种纯牛奶进价为每箱40元,厂家要求售价在4070元之间,若以每箱70元销售平均每天销售30箱,价格每降低1元平均每天可

7、多销售3箱现该商场要保证每天盈利900元,同时又要使顾客得到实惠,那么每箱售价为多少元?25(10分)如图,抛物线经过A(1,0),B(3,0)两点,交y轴于点C,点D为抛物线的顶点,连接BD,点H为BD的中点请解答下列问题:(1)求抛物线的解析式及顶点D的坐标;(2)在y轴上找一点P,使PD+PH的值最小,则PD+PH的最小值为 26(10分)如图,某中学准备建一个面积为300m2的矩形花园,它的一边利用图书馆的后墙,另外三边所围的栅栏的总长度是50m,求垂直于墙的边AB的长度?(后墙MN最长可利用25米)参考答案一、选择题(每小题3分,共30分)1、B【解析】分析:由于四边形ABCD是平行

8、四边形,那么ADBC,AD=BC,根据平行线分线段成比例定理的推论可得DEFBCF,再根据E是AD中点,易求出相似比,从而可求的面积,再利用与是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求的面积,进而可求的面积详解:如图所示,四边形ABCD是平行四边形,ADBC,AD=BC, DEFBCF, 又E是AD中点, DE:BC=DF:BF=1:2, 又DF:BF=1:2, 四边形ABCE的面积=9S,故选B.点睛:相似三角形的性质:相似三角形的面积比等于相似比的平方.2、A【解析】试题分析:先根据圆周角定理的推论得到ACB=90,再利用互余计算出B=40,然后根据圆周角定理求解解:连结

9、BC,如图,AB为O的直径,ACB=90,BAC=50,B=9050=40,ADC=B=40故选A考点:圆周角定理3、D【分析】利用不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式分别判断后即可确定正确的选项【详解】解:经过不在同一直线上的三个点一定可以作圆,故说法错误;若等腰三角形的两边长分别为3和7,则第三边长是7,故说法错误;一个正六边形的内角和是180(6-2)=720其外角和是360,所以一个正六边形的内角和是其外角和的2倍,故说法正确;随意翻到一本书的某页,页码可能是奇数,也可能是偶数,所以随意翻

10、到一本书的某页,页码是偶数是随机事件,故说法正确;关于x的一元二次方程x2-(k+3)x+k=0,所以方程有两个不相等的实数根,故说法正确故选:D.【点睛】本题考查了不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式,熟练掌握相关知识点是本题的解题关键4、C【分析】根据反比例函数的性质逐条判断即可得出答案.【详解】解:A错误 图像在第一、三象限B 错误 当时,函数值y随x的增大而减小C 正确 D 错误 反比例函数x0,所以与y轴无交点故选C【点睛】此题主要考查了反比例函数的性质,牢牢掌握反比例函数相关性质是解题

11、的关键.5、D【分析】根据平行四边形和平行线的性质,得出对应的角相等,再结合相似三角形的性质即可得出答案.【详解】EFCD,ABCD是平行四边形EFCDABGDP=GAB,GPD=GBAGDPGAB又EFABGEQ=GAB,GQE=GBAGEQGAB又ABCD为平行四边形ADBCGDP=BCP,CBP=GBCP=GAB又GPD=BPCGBA=BPCGABBCP又BQF=GQEBQF=GBAGABBFQ综上共有4个三角形与GAB相似故答案选择D.【点睛】本题考查的是相似三角形的判定,需要熟练掌握相似三角形的判定方法,此外,还需要掌握平行四边形和平行线的相关知识.6、B【分析】设AT交O于点D,连

12、结BD,根据圆周角定理可得ADB=90,再由切线性质结合已知条件得BDT和ABD都为等腰直角三角形,由S阴=SBDT计算即可得出答案.【详解】设AT交O于点D,连结BD,如图:AB是O的直径,ADB=90,又ATB=45,BT是O切线,BDT和ABD都为等腰直角三角形,AB=2,AD=BD=TD=22AB=2弓形AD的面积等于弓形BD的面积,S阴=SBDT=1222故答案为B.【点睛】本题考查了切线的性质,圆周角定理,等腰直角三角形的判定,解决本题的关键是利用等腰直角三角形的性质把阴影部分的面积转化为三角形的面积7、B【分析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是

13、中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B【点睛】本题主要考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合8、C【详解】解:共有4个球,红球有1个,摸出的球是红球的概率是:P=故选C【点睛】本题考查概率公式9、C【分析】根据一元二次方程根的判别式,分别计算的值,进行判断即可【详解】解:选项A:=0,方程有两个相等的实数根;选项B、=0-12=-120,方程没有

14、实数根;选项C、=4-41(-17)=4+68=720,方程有两个不相等的实数根;选项D、=1-45=-190,方程没有实数根故选:C【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)的根的判别式=b2-4ac;当0,方程有两个不相等的实数根;当=0,方程有两个相等的实数根;当0,方程没有实数根10、C【分析】根据中心对称图形和轴对称图形的定义逐项进行判断即可.【详解】A、是中心对称图形,但不是轴对称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、既是中心对称图形,又是轴对称图形,符合题意;D、既不是中心对称图形,也不是轴对称图形,故不符合题意.故选:C.【

15、点睛】本题考查中心对称图形和轴对称图形的定义,熟练掌握定义是关键.二、填空题(每小题3分,共24分)11、-1【分析】连结OC,作CDx轴于D,AEx轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OAOB,再根据等腰直角三角形的性质得OCOA,OCOA,然后利用等角的余角相等可得到DCOAOE,则根据“AAS”可判断CODOAE,所以ODAE,CDOEa,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式【详解】解:连结OC,作CDx轴于D,AEx轴于E,设A点坐标为(a,),A点、B点是正比例函数图象与双曲线y的交点,点

16、A与点B关于原点对称,OAOBABC为等腰直角三角形,OCOA,OCOA,DOC+AOE90,DOC+DCO90,DCOAOE,在COD和OAE中,CODOAE,ODAE,CDOE,点C的坐标为(,a),(a)1,k1故答案为:1【点睛】本题是一道综合性较强的题目,用到的知识点有,反比例函数的性质,等腰三角形的性质,全等三角形的判定与性质等,充分考查了学生综合分析问题的能力.此类题目往往需要借助辅助线,使题目更容易理解.12、.【解析】试题分析:由C=E=90,BAC=DAE可得ABCADE,根据相似三角形的对应边的比相等就可求出AD的长试题解析:C=E=90,BAC=DAEABCADEAC:

17、AE=BC:DEDE=考点: 1.相似三角形的判定与性质;2.勾股定理.13、12【解析】根据扇形的弧长等于圆锥底面圆的周长列式进行求解即可.【详解】设这个圆锥的母线长为,依题意,有:,解得:,故答案为:12.【点睛】本题考查了圆锥的运算,正确把握圆锥侧面展开图的扇形的弧长与底面圆的周长间的关系是解题的关键.14、x=1【分析】根据抛物线y=a(x-h)2+k的对称轴是x=h即可确定所以抛物线y=(x-1)2-7的对称轴【详解】解:y=(x-1)2-7对称轴是x=1故填空答案:x=1【点睛】本题主要考查了二次函数的性质,熟记二次函数的对称轴,顶点坐标是解答此题的关键15、【分析】根据A、B坐标

18、求出直线AB的解析式后,求得AB中点M的坐标,连接PM,在等边PAB中,M为AB中点,所以PMAB,再求出直线PM的解析式,求出点P坐标;在RtPAM中,AP=AB=5,即且a0,解得a0,即,将a代入直线PM的解析式中求出b的值,最后计算2(a-b)的值即可;【详解】解:A(4,0),B(0,3),AB=5,设, , ,A(4,0) B(0,3) ,AB中点,连接PM,在等边PAB中,M为AB中点,PMAB,设直线PM的解析式为,在RtPAM中,AP=AB=5,a0,;【点睛】本题主要考查了一次函数的综合应用,掌握一次函数是解题的关键.16、x1【解析】试题分析:根据二次根式有意义的条件是被

19、开方数大于等于1,可知x1考点:二次根式有意义17、【解析】如图,由题意可知ADB=90,BD=,AB=,sinA=.18、 (28+20)【分析】根据三视图可知,直三棱柱的底面是斜边为4厘米、斜边上的高为2厘米的等腰直角三角形,直三棱柱的高是5厘米的立体图形,根据表面积计算公式即可求解【详解】直三棱柱的底面如下图,根据三视图可知,为等腰直角三角形,斜边上的高为2厘米,根据等腰三角形三线合一的性质得:,它的表面积为:(平方厘米)故答案为:【点睛】考查了由三视图判断几何体,几何体的表面积,关键是得到直三棱柱的底面三角形各边的长三、解答题(共66分)19、1【分析】矩形对角线相等且互相平分,即OA

20、OD,根据AOD60可得AOD为等边三角形,即OAAD,AEBD,E为OD的中点,即可求OE的值【详解】解:对角线相等且互相平分,OAODAOD60AOD为等边三角形,则OAAD,BD2DO,ABAD,AD2,AEBD,E为OD的中点OEODAD1,答:OE的长度为1【点睛】本题考查了矩形对角线的性质,利用矩形对角线相等是解题关键.20、(1)见解析;(2)【分析】(1) 根据根的判别式判断即可1,有两个实数根;=1,有一个实数根;1,无实数根.(2) 根据求根公式求出两个根,根据一个根是正数判断k的取值范围即可.【详解】(1)证明:由题意,得 , 方程总有两个实数根.(2)解:由求根公式,得

21、,. 方程有一个根是正数,. .【点睛】此题主要考查了一元二次方程根的判别式及求根公式,熟记概念是解题的关键.21、(1)新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,理由见解析【分析】(1)根据正弦的定义求出AD,根据直角三角形30度角的性质求出AC;(2)根据正切函数的定义求出CD,求出PC的长度,比较大小得到答案【详解】(1)在RtABD中,ADB=90,sinABD=,在RtACD中,ADC=90,ACD=30,AC=2AD=8,答:新传送带AC的长度为8米;(2)距离B点5米的货物不需要挪走,理由如下:在RtABD中,ADB=90,ABD=45,BD=AD=4,在Rt

22、ACD中,ADC=90,ACD=30,AC=8,(米) ,CB=CD-BD2.8,PC=PB-CB2.2,2.22,距离B点5米的货物不需要挪走【点睛】本题实际考查的是解直角三角形的应用,在两个直角三角形拥有公共边的情况下,先求出这条公共边是解答此类题目的关键22、(1)见解析;(2)【分析】(1)首先由正方形的性质得出BA=AD,BAD=90,又由DEAM于点E,BFAM得出AFB=90,DEA=90,ABF=EAD,然后即可判定ABFDAE,即可得出BF=AE;(2)首先设AE=x,则BF=x,DE=AF=2,然后将四边形的面积转化为两个三角形的面积之和,列出方程,得出BF,然后利用勾股定

23、理得出BE,即可得解.【详解】(1)证明:四边形ABCD为正方形,BA=AD,BAD=90,DEAM于点E,BFAM于点F,AFB=90,DEA=90,ABF+BAF=90,EAD+BAF=90,ABF=EAD,在ABF和DEA中,ABFDAE(AAS),BF=AE;(2)设AE=x,则BF=x,DE=AF=2,四边形ABED的面积为24,xx+x2=24,解得x1=6,x2=8(舍去),EF=x2=4,在RtBEF中,BE=2,=【点睛】此题主要考查正方形的性质以及三角形全等的判定与性质、勾股定理的运用,熟练掌握,即可解题.23、羊圈的边长AB,BC分别是20米、20米.【解析】试题分析:设AB的长度为x米,则BC的长度为(1004x)米;然后根据矩形的面积公式列出方程试题解析:设AB的长度为x米,则BC的长度为(1004x)米 根据题意得 (1004x)x=400,解得 x1=20,x2=1 则1004x=20或1004x=2 221, x2=1舍去 即AB=20,BC=20考点:一元二次方程的应用24、当每箱牛奶售价为50元时,平均每天的利润为900元.【解析】试题分析:本题可设每箱牛奶售价为x元,则每箱赢利(x

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论