Cortex-M3的矿井车循迹系统设计_第1页
Cortex-M3的矿井车循迹系统设计_第2页
Cortex-M3的矿井车循迹系统设计_第3页
Cortex-M3的矿井车循迹系统设计_第4页
Cortex-M3的矿井车循迹系统设计_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、【Word版本下载可任意编辑】 Cortex-M3的矿井车循迹系统设计 随着科技的发展、和谐社会的需求,在恶劣矿井下自动小车取代人力运作、保证矿工的人身安全成为了急需解决的问题。智能循迹小车为改善和提高矿井下运输货物,发挥了重要的作用。其中,系统硬件设计及其运行稳定性是智能循迹小车系统的基本要素,而自动循迹的控制是其重要的方面。在矿井环境下,小车运行控制系统具有较强的非线性、模糊性和不确定性,一般路面的运载小车无法完成相应工作,用传统的控制理论和方法很难对其开展有效的控制。 可见矿井恶劣环境下,智能小车自动循迹系统性能的设计变得非常重要。为了实现系统的稳定性,在做了具体环境分析和需求情况下,提

2、出了一种智能小车系统的设计方案,该方案采用的ARM内核作控制端,红外探测器和图像传感器等作为信息采集、传输与通讯,软件上采用模糊控制策略实现。系统能完成在恶劣矿井环境下的自动循迹。 1 系统硬件设计 根据系统设计的需求,结合CPU的选型以及软件控制算法的特点,对自动循迹小车硬件系统开展了整体的规划设计。系统由CPU处理模块、红外探测器、图像传感器、温度传感器、电机驱动、无线传输模块以及存储器模块等组成。各模块之间的联系如图1所示。 图1 系统总体构造图 1)CPU处理模块采用ARM内核Cortex-M3,与其它处理器相比,优势在于低功耗、低成本、高性能3者(或2者)的结合。在系统中其主要功能:

3、实时采集各种传感器的信息,根据系统模糊控制方法,作出系统的判断、决策、相应数据的存储或处理。 2)红外探测器模块是安装在小车周围的多组红外收发模块,通过即时的收发红外信息,判断路况。主要负责对小车路径实时探测,并及时将信息反应CPU开展处理。 3)图像传感器模块采用高速采集、高分辨率、彩色图像OV7725传感器,按照CPU预先设定的采集参数,负责特殊场景的图像采集,并保存在系统存储器或上传远程终端。 4)无线Zigbee模块是基于2.4 G的无线通信组网Zigbee技术,功能是将循迹小车系统的信息上传远程终端,或接收远程终端的控制命令,完成系统的无线通信与整体组网。 5)存储器模块包括外部SD

4、RAM和外扩DKTA FLASH,前者用于系统CPU运算数据的临时存储,后者用于保存采集的重要图像数据,以备远程终端调用。 2 系统软件设计 系统主控芯片为ARM公司的Cortex-M3控制器,负责整体系统的数据采集、运算控制、驱动调配与通信。软件设计开发是基于集成开发环境Keil Uvision4完成,系统软件设计的整体流程如图2所示。 图2 软件设计流程图 系统上电后初始化各存放器,设置图像传感器OV7725采集参数,Zigbee模块通信参数以及配置红外传感器的探测参数。进入工作状态后,先通过无线Zigbee模块检查是否需要与远程终端通信;判断是否需要采集当前环境的图像或温度数据;通过分布

5、在系统周围的红外收发模块,探测小车运行轨迹,实时上传数据到处理器;处理器根据红外探测数据,采取模糊控制策略,输出下一刻电机运行的状态,从而控制小车运行的轨迹。 3 模糊控制决策输出 系统软件设计上,主控制器采集了实时探测的红外信号,作为小车运动的方向判决,由于需要较强的实时性,因此本文提出的控制方法采用了模糊推理机制对参数开展处理,得到模糊可靠的输出,以满足系统的实时性要求。模糊控制系统输入为当前运行路径与期望运行路径的偏差以及偏差的变化率,系统输出为所计算的控制量纠正量。输入变量为A,B(路径偏差、偏差变化率),输出变量为U(控制量纠正量)。控制规则表示为 Ri:ifA is Aiand B

6、 is Bi then C is Ck (1) 其中Ai,Bi,Ck分别表示语言词集。主通道模糊控制器的输入为E和EC,输出为U,设定E,EC和U的论域均为:-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6.对应的模糊语言子集为NB(负大)、N(负中)、NS(负小)、ZO(零)、PS(正小)、PM(正中)、PB(正大).通过比例因子ke和kec将偏差e和偏差变化率ec转换为模糊学习控制器的输入论域E和EC,通过量化因子ku将控制器的输出转化为实际控制量C. 根据在校正过程中要遇到的各种可能出现的情况和相应的调整策略得到控制规则表如下表1所示。 表1 模糊规则表 对于整个模糊控制器

7、决策,在t时刻采样周期内,由公式(2),根据路径误差和误差变化率E,EC,由模糊判决表查出相应的U,并由量化因子ku计算得到实际控制输出C.控制算法实现步骤如下: 1)计算拥塞控制系统的输入状态。 2)根据参考模型的输出与实际对象输出计算e,ec. 3)根据参考模型误差和误差变化率E,EC. 4)计算规则自校正模糊控制器的输出U. 5)由模糊控制的量化因子计算终的实际控制输出C. 4 仿真研究 该系统设计及软件算法研究在Matlab 7.0环境下开展软件仿真。预先设定小车运行的期望轨迹为yd,根据模糊控制方法设计的小车实际运行轨迹为y,仿真的目的是检验该系统设计的小车,在运行过程是否能根据预设的轨迹运行。仿真的结果如图3所示,横轴为运行时间,纵轴为运行的距离。仿真结果显示,小车运行初始状态,不同出发点时与期望路径有偏差,可能到达50%以上;在运行过程中,小车运行逐渐接近预设的轨迹,其后整体的偏差小于5%.系统运行稳定以后,在给定期望轨迹下,探测小车系统能较好的跟踪期望轨迹。 图3 系统实际路径与期望参考路径 5 结论 该小车探测系统采用基于高性能Cortex-M3处理器,图像

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论