




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1若为过椭圆中心的弦,为椭圆的焦点,则面积的最大值为( )A20B30C50D602已知函数是定义在上的偶函数,且在上单调递增,则( )ABCD3已知函数,若,对任意恒有,在区间上有且只有一
2、个使,则的最大值为( )ABCD4已知命题:是“直线和直线互相垂直”的充要条件;命题:函数的最小值为4. 给出下列命题:;,其中真命题的个数为( )A1B2C3D45设复数满足,则( )ABCD6设集合,若,则( )ABCD7设函数若关于的方程有四个实数解,其中,则的取值范围是( )ABCD8已知函数的图像上有且仅有四个不同的点关于直线的对称点在的图像上,则实数的取值范围是( )ABCD9已知复数,其中,是虚数单位,则( )ABCD10函数的图象向右平移个单位得到函数的图象,并且函数在区间上单调递增,在区间上单调递减,则实数的值为( )ABC2D11点在所在的平面内,且,则( )ABCD12已
3、知函数()的部分图象如图所示,且,则的最小值为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在四面体中,与都是边长为2的等边三角形,且平面平面,则该四面体外接球的体积为_14已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是_15一次考试后,某班全班50个人数学成绩的平均分为正数,若把当成一个同学的分数,与原来的50个分数一起,算出这51个分数的平均值为,则_16内角,的对边分别为,若,则_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)设函数.(1)若,求实数的取值范围;(2)证明:,恒成立.18(12分
4、)如图,椭圆的长轴长为,点、为椭圆上的三个点,为椭圆的右端点,过中心,且,(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.19(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.20(12分)古人云:“腹有诗书气自华.”为响应全民阅读,建设书香中国,校园读书活动的热潮正在兴起.某校为统计学生一周课外读书的时间,从全校学生中随机抽取名学生进行问卷调査,统计了他们一周课外读书时间(单位:)的数据如下:一周课外读书时间/合计频数46101214244634频率0.
5、020.030.050.060.070.120.250.171(1)根据表格中提供的数据,求,的值并估算一周课外读书时间的中位数.(2)如果读书时间按,分组,用分层抽样的方法从名学生中抽取20人.求每层应抽取的人数;若从,中抽出的学生中再随机选取2人,求这2人不在同一层的概率.21(12分)近几年一种新奇水果深受广大消费者的喜爱,一位农户发挥聪明才智,把这种露天种植的新奇水果搬到了大棚里,收到了很好的经济效益根据资料显示,产出的新奇水果的箱数x(单位:十箱)与成本y(单位:千元)的关系如下:x13412y5152258y与x可用回归方程 ( 其中,为常数)进行模拟()若该农户产出的该新奇水果的
6、价格为150元/箱,试预测该新奇水果100箱的利润是多少元|()据统计,10月份的连续11天中该农户每天为甲地配送的该新奇水果的箱数的频率分布直方图如图所示(i)若从箱数在内的天数中随机抽取2天,估计恰有1天的水果箱数在内的概率;()求这11天该农户每天为甲地配送的该新奇水果的箱数的平均值(每组用该组区间的中点值作代表)参考数据与公式:设,则0.541.81.530.45线性回归直线中,22(10分)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的极坐标方程为(1)求曲线的直角坐标方程和曲线的参数方程;(2)设曲线与曲线在第二象限的交点为,曲线与轴的交
7、点为,点,求的周长的最大值2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】先设A点的坐标为,根据对称性可得,在表示出面积,由图象遏制,当点A在椭圆的顶点时,此时面积最大,再结合椭圆的标准方程,即可求解.【题目详解】由题意,设A点的坐标为,根据对称性可得,则的面积为,当最大时,的面积最大,由图象可知,当点A在椭圆的上下顶点时,此时的面积最大,又由,可得椭圆的上下顶点坐标为,所以的面积的最大值为.故选:D. 【答案点睛】本题主要考查了椭圆的标准方程及简单的几何性质,以及三角形面积公式
8、的应用,着重考查了数形结合思想,以及化归与转化思想的应用.2、C【答案解析】根据题意,由函数的奇偶性可得,又由,结合函数的单调性分析可得答案【题目详解】根据题意,函数是定义在上的偶函数,则,有,又由在上单调递增,则有,故选C.【答案点睛】本题主要考查函数的奇偶性与单调性的综合应用,注意函数奇偶性的应用,属于基础题3、C【答案解析】根据的零点和最值点列方程组,求得的表达式(用表示),根据在上有且只有一个最大值,求得的取值范围,求得对应的取值范围,由为整数对的取值进行验证,由此求得的最大值.【题目详解】由题意知,则其中,又在上有且只有一个最大值,所以,得,即,所以,又,因此当时,此时取可使成立,当
9、时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当或时,都成立,舍去;当时,此时取可使成立,当时,所以当时,成立;综上所得的最大值为故选:C【答案点睛】本小题主要考查三角函数的零点和最值,考查三角函数的性质,考查化归与转化的数学思想方法,考查分类讨论的数学思想方法,属于中档题.4、A【答案解析】先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【题目详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命
10、题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【答案点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.5、D【答案解析】根据复数运算,即可容易求得结果.【题目详解】.故选:D.【答案点睛】本题考查复数的四则运算,属基础题.6、A【答案解析】根据交集的结果可得是集合的元素,代入方程后可求的值,从而可求.【题目详解】依题意可知是集合的元素,即,解得,由,解得.【答案点睛】本题考查集合的交,注意根据交集的结果确定集合中含有的元素,本题属于基础题.7、B【答案解析】画出函数图像,根据图像知:,计算得到答案
11、.【题目详解】,画出函数图像,如图所示:根据图像知:,故,且.故.故选:.【答案点睛】本题考查了函数零点问题,意在考查学生的计算能力和应用能力,画出图像是解题的关键.8、A【答案解析】可将问题转化,求直线关于直线的对称直线,再分别讨论两函数的增减性,结合函数图像,分析临界点,进一步确定的取值范围即可【题目详解】可求得直线关于直线的对称直线为,当时,当时,则当时,单减,当时,单增;当时,当,,当时,单减,当时,单增;根据题意画出函数大致图像,如图:当与()相切时,得,解得;当与()相切时,满足,解得,结合图像可知,即,故选:A【答案点睛】本题考查数形结合思想求解函数交点问题,导数研究函数增减性,
12、找准临界是解题的关键,属于中档题9、D【答案解析】试题分析:由,得,则,故选D.考点:1、复数的运算;2、复数的模.10、C【答案解析】由函数的图象向右平移个单位得到,函数在区间上单调递增,在区间上单调递减,可得时,取得最大值,即,当时,解得,故选C.点睛:本题主要考查了三角函数图象的平移变换和性质的灵活运用,属于基础题;据平移变换“左加右减,上加下减”的规律求解出,根据函数在区间上单调递增,在区间上单调递减可得时,取得最大值,求解可得实数的值.11、D【答案解析】确定点为外心,代入化简得到,再根据计算得到答案.【题目详解】由可知,点为外心,则,又,所以因为,联立方程可得,因为,所以,即故选:
13、【答案点睛】本题考查了向量模长的计算,意在考查学生的计算能力.12、A【答案解析】是函数的零点,根据五点法求出图中零点及轴左边第一个零点可得【题目详解】由题意,函数在轴右边的第一个零点为,在轴左边第一个零点是,的最小值是故选:A.【答案点睛】本题考查三角函数的周期性,考查函数的对称性函数的零点就是其图象对称中心的横坐标二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】先确定球心的位置,结合勾股定理可求球的半径,进而可得球的面积.【题目详解】取的外心为,设为球心,连接,则平面,取的中点,连接,过做于点,易知四边形为矩形,连接,设,.连接,则,三点共线,易知,所以,.在和中,即,所
14、以,得.所以.【答案点睛】本题主要考查几何体的外接球问题,外接球的半径的求解一般有两个思路:一是确定球心位置,利用勾股定理求解半径;二是利用熟悉的模型求解半径,比如长方体外接球半径是其对角线的一半.14、【答案解析】利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出 的最大值,然后求出结果【题目详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有 ,即而当时满足题意,解得或所以答案为【答案点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简15、1【答案解析】根据均值的定义计
15、算【题目详解】由题意,故答案为:1【答案点睛】本题考查均值的概念,属于基础题16、【答案解析】,即,三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)证明见解析【答案解析】(1)将不等式化为,利用零点分段法,求得不等式的解集.(2)将要证明的不等式转化为证,恒成立,由的最小值为,得到只要证,即证,利用绝对值不等式和基本不等式,证得上式成立.【题目详解】(1),即当时,不等式化为,当时,不等式化为,此时无解当时,不等式化为,综上,原不等式的解集为(2)要证,恒成立即证,恒成立的最小值为2,只需证,即证又成立,原题得证【答案点睛】本题考查绝对值不等式的性质、解法,基本
16、不等式等知识;考查推理论证能力、运算求解能力;考查化归与转化,分类与整合思想.18、(1);(2)详见解析.【答案解析】试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.(1),又是等腰三角形,所以,把点代入椭圆方程,求得,所以椭圆方程为;(2)由题易得直线、斜率均存在,又,所以,设直线代入椭圆方程,化简得,其
17、一解为,另一解为,可求,用代入得,为定值.考点:1.椭圆的方程;2.直线与椭圆的位置关系;3.两点间连线的斜率19、(1)(2)【答案解析】(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【题目详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,即,所以对恒成立,得;当时,即,所以对任意恒成立,得,综上,.【答案点睛】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.20、(1),中位数;(2)三层中抽取
18、的人数分别为2,5,13;【答案解析】(1)根据频率分布直方表的性质,即可求得,得到,再结合中位数的计算方法,即可求解.(2)由题意知用分层抽样的方法从样本中抽取20人,根据抽样比,求得在三层中抽取的人数;由知,设内被抽取的学生分别为,内被抽取的学生分别为,利用列举法得到基本事件的总数,利用古典概型的概率计算公式,即可求解.【题目详解】(1)由题意,可得,所以,.设一周课外读书时间的中位数为小时,则,解得,即一周课外读书时间的中位数约为小时.(2)由题意知用分层抽样的方法从样本中抽取20人,抽样比为,又因为,的频数分别为20,50,130,所以从,三层中抽取的人数分别为2,5,13.由知,在,两层中共抽取7人,设内被抽取的学生分别为,内被抽取的学生分别为,若从这7人中随机抽取2人,则所有情况为,共有21种,其中2人不在同一层的情况为,共有10种.设事件为“这2人不在同一层”,由古典概型的概率计算公式,可得概率为.【答案点睛
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 合同拟制方案么(3篇)
- 2025年商业写字楼智能化改造初步设计策略研究报告
- 金融科技企业估值模型与投资决策在金融科技生态构建中的应用2025年研究报告
- 村里果园合同承包协议书
- 生猪收购代销协议书范本
- 股东对外担保协议书模板
- 沿海拖船转让协议书范本
- 长宁区打印机租赁协议书
- 自驾旅行搭伴协议书范本
- 终止试用期合同解除协议
- 抗日战争的试题及答案
- 以诺书999中英对照
- 军事技能刺杀训练课件
- 《机械数字化设计与制造实例教程(Inventor 2022)》中职全套教学课件
- 2025安全生产月安全生产隐患查找培训课件
- 《信息技术与小学数学教学融合的创新实践》
- 行政事业单位差旅费培训
- 2025-2030中国新能源汽车行业发展分析及发展趋势预测与投资风险研究报告
- 安全生产双重预防机制
- 爬架工程监理细则
- (2025)辅警招聘考试题题库及答案
评论
0/150
提交评论