云南省红河县一中2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第1页
云南省红河县一中2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第2页
云南省红河县一中2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第3页
云南省红河县一中2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第4页
云南省红河县一中2021-2022学年数学高二第二学期期末复习检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1如图所示,给出了样本容量均为7的A、B两组样本数据的散点图,已知A组样本数据的相关系数为r1

2、,B组数据的相关系数为r2,则( )Ar1r2Br1r2D无法判定2已知是定义在上的函数,若且,则的解集为()ABCD3的值等于( )A1B1CD4由0,1,2,3组成无重复数字的四位数,其中0与2不相邻的四位数有A6 个B8个C10个D12个5若如下框图所给的程序运行结果为,那么判断框中应填入的关于的条件是( )ABCD6某个几何体的三视图如图所示(其中正视图中的圆弧是半径为2的半圆),则该几何体的体积为( )ABCD7下列说法中正确的是 ( )相关系数用来衡量两个变量之间线性关系的强弱, 越接近于,相关性越弱;回归直线一定经过样本点的中心;随机误差满足,其方差的大小用来衡量预报的精确度;相

3、关指数用来刻画回归的效果, 越小,说明模型的拟合效果越好.ABCD8已知函数f(x)=ex(3x-1)-ax+a(a1),若有且仅有两个整数xi (i=1,A-2e,1)B73e2,19已知回归直线的斜率的估计值为1.8,样本点的中心为(4,5),则回归直线方程是( )ABCD10函数在定义域内可导,其图象如图所示,记的导函数为,则不等式的解集为( )ABCD11设z=i(2+i),则=A1+2iB1+2iC12iD12i12如图,设区域,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线与所围成阴影区域内的概率是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共2

4、0分。13展开二项式,其常数项为_.14函数在上的最大值是_15计算:_.16已知为抛物线的焦点,点、在抛物线上位于轴的两侧,且(其中为坐标原点),若的面积是,的面积是,则的最小值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.18(12分)羽毛球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球设在甲、乙的比赛中,每回合发球,发球方得1

5、分的概率为0.6,各回合发球的胜负结果相互独立若在一局比赛中,甲先发球(1)求比赛进行3个回合后,甲与乙的比分为的概率;(2)表示3个回合后乙的得分,求的分布列与数学期望19(12分)某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.表1:甲套设备的样本的频数分布表质量指标值95,100)100,105)105,110)110,115)115,120)120,125频数14

6、192051图1:乙套设备的样本的频率分布直方图(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;甲套设备乙套设备合计合格品不合格品合计(2)根据表1和图1,对两套设备的优劣进行比较;(3)将频率视为概率. 若从甲套设备生产的大量产品中,随机抽取3件产品,记抽到的不合格品的个数为,求的期望.附:P(K2k0)0.150.100.0500.0250.010k02.0722.7063.8415.0246.635.20(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重. 大气污染可引起心悸、呼吸困难等心肺疾病.

7、为了解某市心肺疾病是否与性别有关,在某医院随机的对入院50人进行了问卷调查得到了如表所示的列联表:已知在全部50人中随机抽取1人,抽到患心肺疾病的人的概率为.(1)请将列联表补充完整;患心肺疾病不患心肺疾病合计男5女10合计50(2)是否有97.5%的把握认为患心肺疾病与性别有关?说明你的理由;(3)已知在患心肺疾病的10位女性中,有3位又患胃病.现在从患心肺疾病的10位女性中,选出3名进行其他方面的排查,记选出患胃病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考: 0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357

8、.87910.828(参考公式,其中)21(12分)已知复数,其中为虚数单位,.(1)若,求实数的值;(2)若在复平面内对应的点位于第一象限,求实数的取值范围.22(10分)沙漏是古代的一种计时装置,它由两个形状完全相同的容器和一个狭窄的连接管道组成,开始时细沙全部在上部容器中,细沙通过连接管道全部流到下部容器所需要的时间称为该沙漏的一个沙时,如图,某沙漏由上下两个圆锥组成,圆锥的底面直径和高均为8cm,细沙全部在上部时,其高度为圆锥高度的(细管长度忽略不计).(1)如果该沙漏每秒钟漏下0.02cm的沙,则该沙漏的一个沙时为多少秒?(精确到1秒)(2)细沙全部漏入下部后,恰好堆成一个盖住沙漏底

9、部的圆锥形沙堆,求此锥形沙堆的高度. (精确到0.1cm)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】利用“散点图越接近某一条直线线性相关性越强,相关系数的绝对值越大”判断即可.【详解】根据两组样本数据的散点图知,组样本数据几乎在一条直线上,且成正相关,相关系数为应最接近1,组数据分散在一条直线附近,也成正相关,相关系数为,满足,即,故选C【点睛】本题主要考查散点图与线性相关的的关系,属于中档题.判断线性相关的主要方法:(1)散点图(越接近直线,相关性越强);(2)相关系数(绝对值越大,相关性越强).2、D【解析】

10、构造函数,利用导数研究函数的单调性,然后将转化为,即,根据单调建立关系,解之即可。【详解】令函数;由,则;所以在上单调递减;,则,转化为,即;根据在上单调递减,则;所以的解集为;故答案选D【点睛】本题考查利用导数研究函数的单调性,以及利用构造新函数解不等式,考查学生转化的思想,属于中档题。3、B【解析】根据复数的计算方法,可得的值,进而可得,可得答案【详解】解:根据复数的计算方法,可得,则,故选:【点睛】本题考查复数的混合运算,解本题时,注意先计算括号内,再来计算复数平方,属于基础题4、B【解析】分析:首先求由0,1,2,3组成无重复数字的四位数:先排千位数,有种排法,再排另外3个数,有种排法

11、,利用乘法原理能求出组成没有重复数字的四位数的个数;然后求数字0,2相邻的情况:,先把0,2捆绑成一个数字参与排列,再减去0在千位的情况,由此能求出其中数字0,2相邻的四位数的个数最后,求得0与2不相邻的四位数详解:由数字0,1,2,3组成没有重复数字的四位数有:其中数字0,2相邻的四位数有: 则0与2不相邻的四位数有。故选B点睛:本题考查排列数的求法,考查乘法原理、排列、捆绑法,间接法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题5、D【解析】分析:根据赋值框中对累加变量和循环变量的赋值,先判断后执行,假设满足条件,依次执行循环,到累加变量S的值为3

12、5时,再执行一次k=k+1,此时判断框中的条件不满足,由此可以得到判断框中的条件详解:框图首先给累加变量S赋值1,给循环变量k赋值1判断16,执行S=1+1=11,k=11=9;判断96,执行S=11+9=20,k=91=8;判断86,执行S=20+8=28,k=81=7;判断76,执行S=28+7=35,k=6;判断66,输出S的值为35,算法结束所以判断框中的条件是k6?故答案为:D.点睛:本题考查了程序框图中的循环结构,考查了当型循环,当型循环是先判断后执行,满足条件执行循环,不满足条件时,算法结束,此题是基础题6、A【解析】试题分析:由三视图可知该几何体的体积等于长方体体积和半个圆柱体

13、积之和,考点:三视图与体积7、D【解析】运用相关系数、回归直线方程等知识对各个选项逐一进行分析即可【详解】相关系数用来衡量两个变量之间线性关系的强弱,越接近于,相关性越强,故错误回归直线一定经过样本点的中心,故正确随机误差满足,其方差的大小用来衡量预报的精确度,故正确相关指数用来刻画回归的效果,越大,说明模型的拟合效果越好,故错误综上,说法正确的是故选【点睛】本题主要考查的是命题真假的判断,运用相关知识来进行判断,属于基础题8、D【解析】设g(x)=ex(3x1),h(x)=axa,对g(x)求导,将问题转化为存在2个整数xi使得g(xi)在直线h(x)=axa的下方,求导数可得函数的极值,解

14、g(1)h(1)0,g(2)h(2)0,求得a的取值范围【详解】设g(x)=ex(3x1),h(x)=axa,则g(x)=ex(3x+2),x(,23),g(x)0,g(xx(23,+),g(x)0,g(xx=23,取最小值-g(0)=1a=h(0),g(1)h(1)=2e0,直线h(x)=axa恒过定点(1,0)且斜率为a,g(1)h(1)=4e1+2a0,a2eg(2)=7e由g(2)h(2)0,解得:a73故答案为73故选D.【点睛】本题考查求函数的导数,利用导数判断函数的单调性和极值问题,涉及转化的思想,属于中档题对于函数恒成立或者有解求参的问题,常用方法有:变量分离,参变分离,转化为

15、函数最值问题;或者直接求函数最值,使得函数最值大于或者小于0;或者分离成两个函数,使得一个函数恒大于或小于另一个函数9、D【解析】根据回归直线必过样本点的中心可构造方程求得结果.【详解】回归直线斜率的估计值为1.8,且回归直线一定经过样本点的中心,即.故选:.【点睛】本题考查回归直线的求解问题,关键是明确回归直线必过样本点的中心,属于基础题.10、A【解析】根据导数大于0时函数单调递增,导数小于0时原函数单调递减,确定函数的单调性【详解】解:由图象可知,即求函数的单调减区间,从而有解集为,故选:【点睛】本题主要考查了函数的单调性与导数的关系,解题的关键是识图,属于基础题11、D【解析】本题根据

16、复数的乘法运算法则先求得,然后根据共轭复数的概念,写出【详解】,所以,选D【点睛】本题主要考查复数的运算及共轭复数,容易题,注重了基础知识、基本计算能力的考查理解概念,准确计算,是解答此类问题的基本要求部分考生易出现理解性错误12、B【解析】试题分析:图中阴影面积可以用定积分计算求出,即,正方形OABC的面积为1,所以根据几何概型面积计算公式可知,点落到阴影区域内的概率为。考点:1.定积分的应用;2.几何概型。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用二项展开式通项,令的指数为零,求出参数的值,再代入通项可得出二项式展开式的常数项.【详解】二项式展开式的通项为,令,得.

17、所以,二项式展开式的常数项为,故答案为:.【点睛】本题考查二项展开式中常数项的计算,解题时要充分利用二项式展开式通项,利用的指数来求解,考查运算求解能力,属于基础题.14、【解析】求出导函数,求解极值点,然后判断函数的单调性求解函数的最大值即可【详解】函数,令,解得因为,函数在上单调递增,在单调递减;时,取得最大值,故答案为【点睛】本题考查函数的导数的应用,熟练掌握利用导数研究函数的单调性、极值与最值是解题的关键15、【解析】计算出和的值,代入即可计算出结果.【详解】由题意得,故答案为.【点睛】本题考查三角函数值的计算,解题的关键在于将特殊角的三角函数值计算出来,考查计算能力,属于基础题.16

18、、【解析】设点、,并设,则,利用,可得出,并设直线的方程为,将此直线与抛物线的方程联立,利用韦达定理可求出的值,可得出直线过定点,再利用三角形的面积公式以及基本不等式可求出的最小值.【详解】设点、,并设,则,则,易知,得,.设直线的方程为,代入抛物线的方程得,则,得,所以直线的方程为,直线过轴上的定点,当且仅当时,等式成立,因此,的最小值为,故答案为.【点睛】本题考查直线与抛物线的综合问题,常规思路就是设出直线方程,将其与抛物线的方程联立,利用韦达定理求解,另外在求最值时,充分利用基本不等式进行求解,难点在于计算量较大,属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。1

19、7、 (1) .(2)比三百大的数字有15个.(3) .【解析】分析:(1)根据乘法计数原理可知可组成个 个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个 三位数。(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。则有9个数字。第二类:以4结尾,

20、百位有2种选择,十位有3种选择,则共有6个数字。则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是 .点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手(1)“分析”就是找出题目的条件、结论,哪些是“元素”,哪些是“位置”;(2)“分辨”就是辨别是排列还是组合,对某些元素的位置有、无限制等;(3)“分类”就是将较复杂的应用题中的元素分成互相排斥的几类,然后逐类解决;(4)“分步”就是把问题化成几个互相联系的步骤,而每一步

21、都是简单的排列、组合问题,然后逐步解决18、(1)0.1(2)见解析【解析】(1)记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立,设“2个回合后,甲与乙比分为2比1”为事件,由互斥事件概率加法公式和相互独立事件乘法公式求出比赛进行2个回合后,甲与乙的比分为2比1的概率;(2)的可能取值为0,1,2,2,分别求出相应的概率,由此求出的分布列和数学期望.【详解】解:记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立(1)记“2个回合后,甲与乙比分为2比1”为事件,则事件发生表示事件或或发生,且,互斥 又, 由互斥事件概率加法公式可得答:2个回合后,甲与乙比分为2比1的概率为0.

22、1 (2)因表示2个回合后乙的得分,则0,1,2,2, 所以,随机变量的概率分布列为01220.2160.10.2040.144故随机变量的数学期望为=答:的数学期望为1.276【点睛】本题考查概率的求法、离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,是中档题.19、(1)见解析;(2)见解析;(3)【解析】试题分析:(1)根据表1和图1即可完成填表,再由将数据代入计算得即把握认为产品的质量指标值与甲、乙两套设备的选择有关(2)根据题意计算甲、乙两套设备生产的合格品的概率,乙套设备生产的产品的质量指标值与甲套设备相比较为分散,从而做出判断(3)根据题意知满足,代入即可求得结果解析:(1)根据表1和图1得到列联表甲套设备乙套设备合计合格品484391不合格品279合计5050100将列联表中的数据代入公式计算得 ,有90%的把握认为产品的质量指标值与甲、乙两套设备的选择有关(2)根据表1和图1可知,甲套设备生产的合格品的概率约为,乙套设备生产的合格品的概率约为,甲套设备生产的产品的质量指标值主要集中在105,115)之间,乙套设备生产的产品的质量指标值与甲套设

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论