




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,为两条不同的直线,为两个不同的平面,则( )A若,则B若,则C若,则D若,则2在一段线路
2、中并联着两个独立自动控制的开关,只要其中一个开关能够闭合,线路就可以正常工作.设这两个开关能够闭合的概率分别为0.5和0.7,则线路能够正常工作的概率是( )A0.35B0.65C0.85D3个物体的运动方程为其中的单位是米,的单位是秒,那么物体在5秒末的瞬时速度是( )A6米秒B7米秒C8米秒D9米秒4已知函数,若函数有3个零点,则实数的取值范围为( )ABCD5在10个篮球中有6个正品,4个次品.从中抽取4个,则正品数比次品数少的概率为ABCD6设是定义在上的偶函数,对,都有,且当时,若在区间内关于的方程恰好有三个不同的实数根,则的取值范围是( )ABCD7供电部门对某社区位居民2017年
3、12月份人均用电情况进行统计后,按人均用电量分为, , , , 五组,整理得到如下的频率分布直方图,则下列说法错误的是A月份人均用电量人数最多的一组有人B月份人均用电量不低于度的有人C月份人均用电量为度D在这位居民中任选位协助收费,选到的居民用电量在一组的概率为8盒子里共有个除了颜色外完全相同的球,其中有个红球个白球,从盒子中任取个球,则恰好取到个红球个白球的概率为( )ABCD9下图来自古希腊数学家希波克拉底所研究的几何图形,此图由三个半圆构成,三个半圆的直分别为直角三角形的斜边,直角边,.若,在整个图形中随机取一点,则此点取自阴影部分的概率为()( )ABCD10已知函数与的图像有三个不同
4、的公共点,其中为自然对数的底数,则实数的取值范围为( )ABCD11设双曲线:的左、右焦点分别为、,点在上,且满足.若满足条件的点只在的左支上,则的离心率的取值范围是( )ABCD12已知函数是定义在上的奇函数,当时,,则( )A12B20C28D二、填空题:本题共4小题,每小题5分,共20分。13的展开式中常数项为_ 14已知函数在时有极值,则_.15在极坐标系中,圆上的点到直线的距离的最小值是 _16从边长为10cm16cm的矩形纸板的四角截去四个相同的小正方形,作成一个无盖的盒子,则盒子容积的最大值为_cm1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)羽毛
5、球比赛中采用每球得分制,即每回合中胜方得1分,负方得0分,每回合由上回合的胜方发球设在甲、乙的比赛中,每回合发球,发球方得1分的概率为0.6,各回合发球的胜负结果相互独立若在一局比赛中,甲先发球(1)求比赛进行3个回合后,甲与乙的比分为的概率;(2)表示3个回合后乙的得分,求的分布列与数学期望18(12分)已知都是正数(1)若,求证:;(2)若,求证:19(12分)已知函数. (1)证明:函数在内存在唯一零点;(2)已知,若函数有两个相异零点,且(为与无关的常数),证明:.20(12分)2019年6月13日,三届奥运亚军,羽坛传奇,马来西亚名将李宗伟宣布退役,当天有大量网友关注此事件,某网上论
6、坛从关注此事件跟帖中,随机抽取了100名网友进行调查统计,先分别统计他们在跟帖中的留言条数,再把网友人数按留言条数分成6组;,得到如下图所小的频率分布直方图;并将其中留言不低于40条的规定为“强烈关注”,否则为“一般关注”,对这100名网友进一步统计,得到部分数据如下的列联表.(1)在答题卡上补全22列联表中数据,并判断能否有95%的把握认为网友对此事件是否为“强烈关注”与性别有关?(2)该论坛欲在上述“强烈关注”的网友中按性别进行分层抽样,共抽取5人,并在此5人中随机抽取两名接受访谈,记女性访谈者的人数为,求的分布列与数学期望.0.1500.1000.0500.0250.0100.0052.
7、0722.7063.8415.0246.6357.879参考公式与数据:,其中.21(12分)2020年开始,国家逐步推行全新的高考制度新高考不再分文理科,采用3+3模式,其中语文、数学、外语三科为必考科目,满分各150分,另外考生还要依据想考取的高校及专业的要求,结合自己的兴趣爱好等因素,在思想政治、历史、地理、物理、化学、生物6门科目中自选3门参加考试(6选3),每科目满分100分为了应对新高考,某高中从高一年级1000名学生(其中男生550人,女生450人)中,根据性别分层,采用分层抽样的方法从中抽取100名学生进行调查(1)学校计划在高一上学期开设选修中的“物理”和“地理”两个科目,为
8、了了解学生对这两个科目的选课情况,对抽取到的100名学生进行问卷调查(假定每名学生在这两个科目中必须选择一个科目且只能选择一个科目),如表是根据调查结果得到的列联表请将列联表补充完整,并判断是否有的把握认为选择科目与性别有关?说明你的理由;(2)在抽取到的女生中按(1)中的选课情况进行分层抽样,从中抽出9名女生,再从这9名女生中随机抽取4人,设这4人中选择“地理”的人数为,求的分布列及数学期望选择“物理”选择“地理”总计男生10女生25总计附参考公式及数据:,其中.0.050.013.8416.63522(10分)统计学中,经常用环比、同比来进行数据比较,环比是指本期统计数据与上期比较,如年月
9、与年月相比,同比是指本期数据与历史同时期比较,如年月与年月相比.环比增长率(本期数上期数)上期数,同比增长率(本期数同期数)同期数.下表是某地区近个月来的消费者信心指数的统计数据:序号时间年月年月年月年月年月年月年月年月消费者信心指数2017年月年月年月年月年月年月年月年月年月求该地区年月消费者信心指数的同比增长率(百分比形式下保留整数);除年月以外,该地区消费者信心指数月环比增长率为负数的有几个月?由以上数据可判断,序号与该地区消费者信心指数具有线性相关关系,写出关于的线性回归方程(,保留位小数),并依此预测该地区年月的消费者信心指数(结果保留位小数,参考数据与公式:,)参考答案一、选择题:
10、本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据空间线面关系、面面关系及其平行、垂直的性质定理进行判断【详解】对于A选项,若,则与平行、相交、异面都可以,位置关系不确定;对于B选项,若,且,根据直线与平面平行的判定定理知,但与不平行;对于C选项,若,在平面内可找到两条相交直线、使得,于是可得出,根据直线与平面垂直的判定定理可得;对于D选项,若,在平面内可找到一条直线与两平面的交线垂直,根据平面与平面垂直的性质定理得知,只有当时,才与平面垂直故选C【点睛】本题考查空间线面关系以及面面关系有关命题的判断,判断时要根据空间线面、面面平行与垂
11、直的判定与性质定理来进行,考查逻辑推理能力,属于中等题2、C【解析】试题分析:线路能够了正常工作的概率=,故选C.考点:独立事件,事件的关系与概率.3、D【解析】分析:求出运动方程的导数,据对位移求导即得到物体的瞬时速度,求出导函数在t=3时的值,即为物体在3秒末的瞬时速度详解:物体的运动方程为s=1t+t2s=1+2ts|t=5=9.故答案为:D.点睛:求物体的瞬时速度,只要对位移求导数即可4、C【解析】求导计算处导数,画出函数和的图像,根据图像得到答案.【详解】当时,则,;当时,则,当时,;画出和函数图像,如图所示:函数有3个交点,根据图像知.故选:.【点睛】本题考查了根据函数零点个数求参
12、数,意在考查学生的计算能力和应用能力,画出函数图像是解题的关键.5、A【解析】正品数比次品数少,包括一正三次和全部是次品两种情况,根据情况写出所有的组合数计算即可.【详解】正品数比次品数少,包括一正三次和全部是次品这两种情况为,总数为,所以概率为选A.【点睛】本题考查概率问题,解题的关键是正确的求出所有可能的结果,属于基础题.6、D【解析】由f(x2)=f(x+2),可得函数的周期T=4,当x2,0时,,可得(2,6的图象如下:从图可看出,要使f(x)的图象与y=loga(x+2)的图象恰有3个不同的交点,则需满足,求解不等式组可得的取值范围是.本题选择D选项.7、C【解析】根据频率分布直方图
13、知,12月份人均用电量人数最多的一组是10,20),有10000.0410=400人,A正确;12月份人均用电量不低于20度的频率是(0.03+0.01+0.01)10=0.5,有10000.5=500人,B正确;12月份人均用电量为50.1+150.4+250.3+350.1+450.1=22,C错误;在这1000位居民中任选1位协助收费,用电量在30,40)一组的频率为0.1,估计所求的概率为,D正确.故选C.8、B【解析】由题意得所求概率为选9、D【解析】首先计算出图形的总面积以及阴影部分的面积,再根据几何概型的概率计算公式计算可得.【详解】解:因为直角三角形的斜边为,所以,以为直径的圆
14、面积为,以为直径的圆面积为,以为直径的圆面积为.所以图形总面积,所以.故选:【点睛】本题考查面积型几何概型的概率计算问题,属于基础题.10、B【解析】将函数有三个公共点,转化为有三个解,再利用换元法设,整理为,画出函数图形得到答案.【详解】函数与的图像有三个不同的公共点即有三个解整理得: 设,当单调递减,单调递增.如图所示:原式整理得到: 图像有三个不同的公共点,即二次方程有两个解,一个小于0.一个在上或 当时, 当时,另一个零点在上,满足条件.故答案为B【点睛】本题考查了函数的零点问题,根据条件转化为方程的解,再利用换元法简化计算,本题综合性强,计算量大,意在考查学生的综合应用能力和计算能力
15、.11、C【解析】本题需要分类讨论,首先需要讨论“在双曲线的右支上”这种情况,然后讨论“在双曲线的左支上”这种情况,然后根据题意,即可得出结果。【详解】若在双曲线的右支上,根据双曲线的相关性质可知,此时的最小值为,因为满足题意的点在双曲线的左支,所以,即,所以,若在双曲线的左支上,根据双曲线的相关性质可知,此时的最小值为,想要满足题意的点在双曲线的左支上,则需要满足,即,所以由得,故选C。【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆锥曲线中双曲线的相关性质,考查双曲线的离心率的取值范围,考查双曲线的长轴、短轴以及焦距之间的关系,考查推理能力,是中档题。12、A【解析】先计算出的值,然后利
16、用奇函数的性质得出可得出的值。【详解】当时,则,由于函数是定义在上的奇函数,所以,故选:A.【点睛】本题考查利用函数奇偶性求值,求函数值时要注意根据自变量的范围选择合适的解析式,合理利用奇偶性是解本题的关键,考查运算求解能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、15【解析】把展开,求的系数,但无项,所以常数项为展开式中常数项乘以3.【详解】展开式中通项为,当时,;由于,无正整数解,所以常数项为15,填15.【点睛】本题考查二项式定理的特定项问题,往往是根据二项展开式的通项和所求项的联系解题,属于基础题,注意运算的准确度14、【解析】函数在时有极值,由,代入解出再检
17、验即可。【详解】由题意知又在时有极值,所以或当时,与题意在时有极值矛盾,舍去故,故填【点睛】本题考查根据函数的极值点求参数,属于中档题,需要注意的是求解的结果一定要检验其是否满足题意。15、1【解析】试题分析:圆的直角坐标方程为,直线的直角坐标方程为,圆心到直线的距离,圆上的点到直线的距离的最小值为.考点:直角坐标与极坐标、距离公式.16、144【解析】设小正方形的边长为xcm,【详解】设小正方形的边长为xcm则盒子的容积V=V当0 x0,当2x5x=2时,V取得极大值,也是最大值,V=故答案为144【点睛】本题主要考查了导数在解决实际问题中的应用,考查了学生的阅读理解能力和利用数学知识解决问
18、题的能力,属于基础题目三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0.1(2)见解析【解析】(1)记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立,设“2个回合后,甲与乙比分为2比1”为事件,由互斥事件概率加法公式和相互独立事件乘法公式求出比赛进行2个回合后,甲与乙的比分为2比1的概率;(2)的可能取值为0,1,2,2,分别求出相应的概率,由此求出的分布列和数学期望.【详解】解:记“第回合发球,甲胜”为事件,=1,2,2,且事件相互独立(1)记“2个回合后,甲与乙比分为2比1”为事件,则事件发生表示事件或或发生,且,互斥 又, 由互斥事件概率加法公式可得
19、答:2个回合后,甲与乙比分为2比1的概率为0.1 (2)因表示2个回合后乙的得分,则0,1,2,2, 所以,随机变量的概率分布列为01220.2160.10.2040.144故随机变量的数学期望为=答:的数学期望为1.276【点睛】本题考查概率的求法、离散型随机变量的分布列、数学期望等基础知识,考查运算求解能力,是中档题.18、 (1)证明见解析;(2)证明见解析【解析】(1)根据基本不等式得, ,再利用不等式性质三式相乘得结果,(2)根据基本不等式得,再三式相加得结果【详解】证明:因为为正数,所以,同理 ,所以 因为,所以 (2)证明:由,且 ,可得,同理可得,三式相加,可得 ,即为,则成立
20、【点睛】本题考查利用基本不等式证明不等式,考查综合分析求解能力,属中档题.19、(1)证明见解析;(2)证明见解析【解析】(1)先利用导数确定单调性,再利用零点存在定理证明结论,(2)先求,再结合恒成立转化证明,即需证,根据条件消,令,转化证,即需证, 这个不等式利用导数易证.【详解】(1),令,则在上恒成立,所以,在上单调递减, ,根据零点存在定理得,函数在存在唯一零点, 当时,所以在存在唯一零点;(2)因为,所以, 不妨设,因为,所以,所以,因为,而要求满足的b的最大值,所以只需证明.所以(*)令,则,所以(*),令,则, 所以在上单调递增,即综上,.【点睛】本题考查利用导数研究函数零点以
21、及利用导数证明不等式,考查综合分析论证能力,属难题.20、(1)列联表见解析,没有的把握认为网友对此事件是否为“强烈关注”与性别有关(2)分布列见解析,数学期望【解析】1根据频率分布直方图中的频率,计算强烈关注的频率进而得到强烈关注的人数,结合表中的数据即可得到其余数据,补全列联表,根据列联表中的数据计算的值,结合临界值表中的数据判断即可;2的可能取值为0,1,2,分别求出相应的概率,由此能求出的分布列和数学期望【详解】1根据频率分布直方图得,网友强烈关注的频率为,所以强烈关注的人数为,因为强烈关注的女行有10人,所以强烈关注的男性有15人,所以一般关注的男性有人,一般关注的女性有人,所以列联表如下:一般关注强烈关注合计男301545女451055合计7525100由列联表中数据可得:所以没有的把握认为网友对此事件是否为“强烈关注”与性别有关2论坛欲在上述“强烈关注的网友中按性别进行分层抽样,共抽取5人,则抽中女性网友:人,抽中男性网友:人,在此5人中随机抽取两名接受访谈,记女性访谈者的人数为,则的可能取值为0,1,2,的分布列为:012P数学期望【点睛】本题考查独立性检验、根据频率分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度共享汽车合作经营协议
- 2025年度人工智能股权赠与及应用推广协议
- 2025年度新材料研发竞业限制及保密协议
- 二零二五年度离婚协议书简易版(财产评估与分配)
- 二零二五年度酒店预订与团队住宿优惠协议
- 建筑信息模型职业技能理论知识模拟练习题(附参考答案)
- 单片机原理与应用习题
- 单元教学设计10 韦达定理在高中数学中的应用-高中数学单元教学设计
- 第一单元图文处理与编排三、编辑加工文字教学设计 2023-2024学年人教版初中信息技术七年级上册
- 工作效率、工作时间、工作量(教学设计)-2024-2025学年四年级上册数学沪教版
- 民主制度的基本原则和形式
- 纺织染整行业安全培训
- 载重汽车的安全操作规程范本
- 平台对接技术方案
- 智慧农业智慧物联网整体解决方案
- 化妆品包装相容性评估方法
- 消防车辆与泵装备的配置与选用与更新的技术要求与管理办法
- 风电处理软件WT操作手册
- 学校重大事项议事决策制度
- 轻钢结构厂房安装合同范本
- 道路工程监理投标方案
评论
0/150
提交评论