广东省廉江市实验学校2021-2022学年高二数学第二学期期末预测试题含解析_第1页
广东省廉江市实验学校2021-2022学年高二数学第二学期期末预测试题含解析_第2页
广东省廉江市实验学校2021-2022学年高二数学第二学期期末预测试题含解析_第3页
广东省廉江市实验学校2021-2022学年高二数学第二学期期末预测试题含解析_第4页
广东省廉江市实验学校2021-2022学年高二数学第二学期期末预测试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则的最小值是A BCD2 “纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正

2、方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A2B3C10D153以下四个命题中是真命题的是 ( )A对分类变量x与y的随机变量观测值k来说,k越小,判断“x与y有关系”的把握程度越大B两个随机变量的线性相关性越强,相关系数的绝对值越接近于0C若数据的方差为1,则的方差为2D在回归分析中,可用相关指数的值判断模型的拟合效果,越大,模型的拟合效果越好4一个盒子装有4件产品,其中有3件一等品,1件二等品.从中不放回的取两次,每次取出一件.设事件为“第一次取到的是一等品”,事件为“第二次取到的是一等品”.则( )ABCD5把一枚骰子连续掷两次,已知在第一次抛

3、出的是奇数点的情况下,第二次抛出的也是奇数点的概率为( )ABCD6某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A72B120C144D1687若均为第二象限角,满足,则( )ABCD8用数学归纳法证明“能被13整除”的第二步中,当时为了使用归纳假设,对变形正确的是( )ABCD9设函数f(x)axA193B163C1310已知函数,若有最小值,则实数的取值范围是( )ABCD11若点是曲线上任意一点,则点到直线的距离的最小值为()ABCD12为了了解手机品牌的选择是否和年龄的大小有关,随机抽取部分华为手机使用者和苹果机使用者进行统计,

4、统计结果如下表:年龄 手机品牌华为苹果合计30岁以上40206030岁以下(含30岁)152540合计5545100附:P()0.100.050.0100.0012.7063.8416.63510.828根据表格计算得的观测值,据此判断下列结论正确的是( )A没有任何把握认为“手机品牌的选择与年龄大小有关”B可以在犯错误的概率不超过0.001的前提下认为“手机品牌的选择与年龄大小有关”C可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”D可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小无关”二、填空题:本题共4小题,每小题5分,共20分。13已知

5、直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为_14已知直线与椭圆相切于第一象限的点,且直线与轴、轴分别交于点、,当(为坐标原点)的面积最小时,(、是椭圆的两个焦点),若此时在中,的平分线的长度为,则实数的值是_15设函数的图象与的图象关于直线对称,且,则实数_16若函数在内有且只有一个零点,则在上的最大值与最小值的和为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,kR(I)求函数f(x)的单调区间;(II)当k0时,若函数f(x)在区间(1,2)内单调递减,求k的取值范围18(12分) (1)求的解集M;(2

6、)设且abc1求证: 19(12分)选修4-4:坐标系与参数方程在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程;()求曲线的普通方程和曲线的直角坐标方程;()设为曲线上的动点,求点到曲线上的距离的最小值的值.20(12分)如图,在中, ,角的平分线交于点,设,其中是直线的倾斜角(1)求;(2)若,求的长21(12分)已知矩阵对应的变换将点变换成(1)求矩阵的逆矩阵;(2)求矩阵的特征向量22(10分)已知a,点在矩阵对应的变换下得到点.(1)求a,b的值;(2)求矩阵A的特征值和特征向量;(3)若向量,求.参考答案一、选择题:本题共1

7、2小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】将代数式与代数式相乘,展开后利用基本不等式求出代数式的最小值,然后在不等式两边同时除以可得出答案【详解】因为 ,又,所以,当且仅当时取,故选B【点睛】本题考查利用基本不等式求代数式的最值,在利用基本不等式求最值时,要注意配凑“定值”的条件,注意“一正、二定、三相等”基本思想的应用2、C【解析】根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【详解】设阴影部分的面积是s,由题意得4001000=【点睛】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解(2

8、)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域3、D【解析】依据线性相关及相关指数的有关知识可以推断,即可得到答案.【详解】依据线性相关及相关指数的有关知识可以推断,选项D是正确的【点睛】本题主要考查了线性相指数的知识及其应用,其中解答中熟记相关指数的概念和相关指数与相关性之间的关系是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4、C【解析】利用古典概型概率公式计算出和,然后利用条件概率公式可计算出结果。【详解】事件前两次取到的都是一等品,由古典概型的概率公式得,由古典概型的概率公式得,由条件概率公式得

9、,故选:C.【点睛】本题考查条件概率公式求概率,解题时要弄清楚各事件之间的关系,关键在于灵活利用条件概率公式计算,考查运算求解能力,属于中等题。5、C【解析】分析:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,利用古典概型概率公式求出的值,由条件概率公式可得结果.详解:设表示“第一次抛出的是奇数点”,表示“第二次抛出的是奇数点”,在第一次抛出的是奇数点的情况下,第二次抛出的也是奇数点的概率为,故选C.点睛:本题考查概率的求法,是基础题,解题时要认真审题,注意条件概率计算公式的合理运用,同时注意区分独立事件同时发生的概率与条件概率的区别与联系.6、B【解析】分两类,一类是歌舞类用

10、两个隔开共种,第二类是歌舞类用三个隔开共种,所以N=+=120.种选B.7、B【解析】利用同角三角函数的基本关系求得cos和sin的值,两角和的三角公式求得cos(+)的值【详解】解:sin,cos,、均为第二象限角,cos,sin,cos(+)coscos-sinsin(),故答案为B【点睛】本题主要考查同角三角函数的基本关系,两角和的余弦公式,属于基础题8、A【解析】试题分析:假设当,能被13整除, 当应化成形式,所以答案为A考点:数学归纳法9、D【解析】由题,求导,将x=-1代入可得答案.【详解】函数f(x)的导函数f(x)=3ax解得a=10故选D【点睛】本题考查了函数的求导,属于基础

11、题.10、C【解析】求出原函数的导函数,函数有最小值,则导函数在小于0有解,于是转化为斜率问题求解得到答案.【详解】根据题意,得,若有最小值,即在上先递减再递增,即在先小于0,再大于0,令,得:,令,只需的斜率大于过的的切线的斜率即可,设切点为,则切线方程为:,将代入切线方程得:,故切点为,切线的斜率为1,只需即可,解得:,故答案为C.【点睛】本题主要考查函数的最值问题,导函数的几何意义,意在考查学生的转化能力,分析能力及计算能力,难度较大.11、C【解析】点是曲线上任意一点,所以当曲线在点P的切线与直线平行时,点P到直线的距离的最小,直线的斜率为1,由,解得或(舍).所以曲线与直线的切点为.

12、点到直线的距离最小值是.选C.12、C【解析】根据的意义判断【详解】因为,所以可以在犯错误的概率不超过0.01的前提下认为“手机品牌的选择与年龄大小有关”,故选:C.【点睛】本题考查独立性检验,属于简单题二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解【详解】由题意,设,则到直线的距离,故答案为【点睛】本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题14、【解析】分析:求出切线方程,可得三角

13、形面积,利用基本不等式求出最小值时切点坐标,设,利用余弦定理结合椭圆的定义,由三角形面积公式可得,根据与椭圆的定义即可的结果.详解:由题意,切线方程为,直线与轴分别相交于点,当且仅当时,为坐标原点)的面积最小,设,由余弦定理可得,的内角平分线长度为,故答案为.点睛:本题考查椭圆的切线方程、椭圆的定义、椭圆几何性质以及利用基本不等式求最值、三角形面积公式定义域、余弦定理的应用,意在考查学生综合利用所学知识解决问题的能力,属于难题.在解答与椭圆两个焦点有关的三角形问题时,往往综合利用椭圆的定义与余弦定理解答.15、【解析】设f(x)上任意一点为(x,y),则(x,y)关于直线yx对称的点为(y,x

14、),把(y,x)代入,得f(x)log3(-x)+a,由此利用f(3)+f()4,能求出a的值【详解】函数yf(x)的图象与的图象关于直线yx对称,设f(x)上任意一点为(x,y),则(x,y)关于直线yx对称的点为(y,x),把(y,x)代入,得x,f(x)log3(-x)+a,f(3)+f()4,1+a1+a4,解得a1故答案为1【点睛】本题考查指对函数的相互转化,考查对数值的运算,考查函数与方程思想,是基础题16、.【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数

15、在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()见解析;()【解析】分析:()先求出函数的定义域,求导数后根据的取值通过分类讨论求单调区间即可()将问题转化为在(1,2)上恒成立可得所求详解:(I)函数的定义域为由题意得,(1)当时,令,解得;令,解得(2)当时,当,即时,令,解得或;令,解得当时,恒成立,函数在上为单调递增函数;当,即时,令,

16、解得或;令,解得综上所述,当时,函数的单调递增区间为(0,1),单调递减区间为;当时,函数的单调递增区间为(0,1),单调递减区间为;当时,函数的单调递增区间为;当时,函数的单调递增区间为,单调递减区间为(II)因为函数在(1,2)内单调递减,所以在(1,2)上恒成立又因为,则,所以在(1,2)上恒成立,即在(1,2)上恒成立,因为,所以,又,所以故k的取值范围为点睛:解题时注意导函数的符号和函数单调性间的关系特别注意:若函数在某一区间上单调,实际上就是在该区间上0(或0)(在该区间的任意子区间内都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围18、 (1);

17、 (2)见解析.【解析】(1)利用零点分类法进行求解即可;(2)对求证的式子中的每一项先应用重要不等式,最后应用基本不等式即可证明.【详解】(1),由,得或或解得,故(2)因为,(当且仅当时取等号)所以(当且仅当时取等号).【点睛】本题考查了解绝对值不等式,考查了应用重要不等式、基本不等式证明不等式.19、 (1) ;.(2) 当时,的最小值为.【解析】分析:()利用三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式,把极坐标方程化为直角坐标方程;()求得椭圆上到直线的距离为,可得的最小值,以及此时的的值,从而求得点的坐标.详解:()由曲线(为参数),曲线的普通方程为

18、:.由曲线,展开可得:,化为:.即:曲线的直角坐标方程为:.()椭圆上的点到直线的距离为当时,的最小值为. 点睛:本题考查圆的参数方程和普通方程的转化、直线极坐标方程和直角坐标方程的转化以及点到直线距离公式,消去参数方程中的参数,就可把参数方程化为普通方程,消去参数的常用方法有:代入消元法;加减消元法;乘除消元法;三角恒等式消元法,极坐标方程化为直角坐标方程,只要将和换成和即可.20、(1);(2)5.【解析】试题分析:(1)由直线的倾斜角概念可得,由二倍角公式可求得,故而可求得;(2)由正弦定理得,由得,联立方程组得结果.试题解析:(1)是直线的倾斜角,,又,故, 则, .(2)由正弦定理,得,即,又 , 由上两式解得, 又由,得, 21、(1);(2)和.【解析】(1)由题中点的变换得到,列方程组解出、的值,再利用逆矩阵变换求出;(2)求出矩阵的特征多项式,解出特征根,即可得出特征值和相应的特征向量.【详解】(1)由题意得,即,解得,由于矩阵的逆矩阵为,因此,矩阵的逆矩阵为;(2)矩阵的特征多项式为,解特征方程,得或.当时,由,得,即,可取,则,即属于的一个特征向量为;当时,由,得,即,可取,则,即属于的一个特征向量为.综上,矩阵的特征向量为和.【点睛】本题考查矩阵的变换和逆矩阵的求法,考查矩阵的特征值和特征向量的求法,考查方程思想与运算能力,属

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论