版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数的导函数为,满足,且,则不等式的解集为( )ABCD2若点与曲线上点的距离的最小值为,则实数的值为( )ABCD3使得的展开式中含有常数项的最小的n为( )ABCD4二项式展
2、开式中的常数项为( )ABCD5已知三个正态分布密度函数(, )的图象如图所示则( )ABCD6设M=a+1a-2(2aNBM=NCM0,y0,x+2y+2xy=8,则x+2y的最小值是A3B4CD12一名法官在审理一起珍宝盗窃案时,四名嫌疑人甲、乙、丙、丁的供词如下,甲说:“罪犯在 乙、丙、丁三人之中”;乙说:“我没有作案,是丙偷的”;丙说:“甲、乙两人中有一人是小偷”;丁说:乙说的是事实”.经过调查核实,四人中有两人说的是真话,另外两人说的是假话, 且这四人中只有一人是罪犯,由此可判断罪犯是( )A甲 B乙 C丙 D丁二、填空题:本题共4小题,每小题5分,共20分。13若关于的不等式的解集
3、是空集,则实数的取值范围是_.14已知等比数列中,则公比_;_15某林场有树苗3000棵,其中松树苗400棵为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的棵数为 16已知为虚数单位,则复数的虚部为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知f(x)|x24x3|.(1)作出函数f(x)的图象;(2)求函数f(x)的单调区间,并指出其单调性;(3)求集合Mm|使方程f(x)m有四个不相等的实根.18(12分)如果球、正方体与等边圆柱(底面直径与母线相等)的体积相等,求它们的表面积的大小关系19(12分)已知函数,(1)令
4、,当时,求实数的取值范围;(2)令的值域为,求实数的取值范围;(3)已知函数在,数集上都有定义,对任意的,当时或成立,则称是数集上的限制函数;令函数,求其在上的限制函数的解析式,并求在上的单调区间20(12分)如图,等高的正三棱锥P-ABC与圆锥SO的底面都在平面M上,且圆O过点A,又圆O的直径ADBC,垂足为E,设圆锥SO的底面半径为1,圆锥体积为(1)求圆锥的侧面积;(2)求异面直线AB与SD所成角的大小;(3)若平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为,求三棱锥的侧棱PA与底面ABC所成角的大小21(12分)已知函数,为常数()若时,已知在定义域内有且只有一个极值点,求的
5、取值范围;()若,已知,恒成立,求的取值范围。22(10分)已知函数(1)当时,求函数在上的最大值和最小值;(2)当函数在上单调时,求的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】令,这样原不等式可以转化为,构造新函数,求导,并结合已知条件,可以判断出的单调性,利用单调性,从而可以解得,也就可以求解出,得到答案.【详解】解:令,则,令,则,在上单调递增,故选A.【点睛】本题考查了利用转化法、构造函数法、求导法解决不等式解集问题,考查了数学运算能力和推理论证能力.2、D【解析】设,求得函数的导数,可得切线的斜
6、率,由两点的斜率公式,以及两点的距离公式,解方程可得所求值【详解】的导数为,设,可得过的切线的斜率为,当垂直于切线时,取得最小值,可得,且,可得,解得或(舍去),即有,解得,故选:D【点睛】本题考查导数几何意义的应用、距离的最小值,考查函数与方程思想、转化与化归思想、数形结合思想,考查逻辑推理能力、运算求解能力.3、B【解析】二项式展开式的通项公式为,若展开式中有常数项,则,解得,当r取2时,n的最小值为5,故选B【考点定位】本题考查二项式定理的应用4、B【解析】求出二项展开式的通项,使得的指数为,即可得出常数项.【详解】通项为常数项为故选:B【点睛】本题主要考查了利用二项式定理求常数项,属于
7、基础题.5、D【解析】正态曲线关于x对称,且越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有越小图象越瘦长,得到正确的结果【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为,则对应的函数的图像的对称轴为:,正态曲线关于x对称,且越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,越小图象越瘦长,得到第二个图象的比第三个的要小,第一个和第二个的相等故选D【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是
8、一个基础题6、A【解析】x2+1161N=log12(x2+又M=a+1a-2=a-2+10a-2N.答案:A点睛:这个题目考查了比较函数值的大小关系;比较大小的常用方法有:做差,如果数值均为正,还可以考虑做商;还可以构造函数应用单调性比较大小;还可以放缩比较大小,常用的放缩方式有:不等式的应用7、A【解析】求导函数,切点切线的斜率,求出切点的坐标,即可得到切线方程【详解】求曲线yexlnx导函数,可得f(x)exlnxf(1)e,f(1)0,切点(1,0)函数f(x)exlnx在点(1,f(1)处的切线方程是:y0e(x1),即ye(x1)故选:A【点睛】本题考查导数的几何意义,考查学生的计
9、算能力,属于基本知识的考查8、C【解析】分析:直接利用复数的除法运算得解.详解:由题得,故答案为:C.点睛:本题主要考查复数的运算,意在考查学生对该知识的掌握水平和基本运算能力.9、B【解析】分析:根据组合数的计算公式,即可求解答案.详解:由题意且,解得,故选B.点睛:本题主要考查了组合数的计算公式的应用,其中熟记组合数的计算公式是解答的关键,着重考查了推理与计算能力.10、B【解析】设出大正方形的面积,求出阴影部分的面积,从而求出满足条件的概率即可【详解】设“东方魔板”的面积是4,则阴影部分的三角形面积是1,阴影部分平行四边形的面积是 则满足条件的概率 故选:B【点睛】本题考查了几何概型问题
10、,考查面积之比,是一道基础题11、B【解析】解析:考察均值不等式,整理得即,又,12、B【解析】乙、丁两人的观点一致,乙、丁两人的供词应该是同真或同假;若乙、丁两人说的是真话,则甲、丙两人说的是假话,由乙说真话推出丙是罪犯的结论;由甲说假话,推出乙、丙、丁三人不是罪犯的结论,矛盾;乙、丁两人说的是假话,而甲、丙两人说的是真话;由甲、丙的供述内容可以断定乙是罪犯二、填空题:本题共4小题,每小题5分,共20分。13、 (,6【解析】由题意可设,则当时, ;当时,;当时,不等式可化为。在平面直角坐标系中画出函数的图像如图,结合图像可知当,不等式的解集是空集,则实数的取值范围是,应填答案。14、2 4
11、 【解析】根据等比数列通项公式构造方程求解即可.【详解】 本题正确结果:;【点睛】本题考查等比数列基本量的求解,关键是熟练掌握等比数列通项公式,属于基础题.15、20【解析】试题分析:由分层抽样的方法知样本中松树苗的棵数应为150的,所以样本中松树苗的棵数应为.考点:分层抽样.16、【解析】先化简复数,再利用复数的概念求解.【详解】因为复数,所以复数的虚部为.故答案为:【点睛】本题主要考查复数的概念及运算,还考查了理解辨析和运算求解的能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (1)见解析.(2)见解析.(3) Mm|0m1.【解析】(1)借助对称性
12、作f(x)=|x24x+3|的图象即可,(2)由图象写出函数f(x)的单调区间即可;(3)作f(x)=|x24x+3|与y=m的图象,由二者的交点个数确定出集合M【详解】(1)当x24x30时,x1或x3,f(x)f(x)的图象为:(2)由函数的图象可知f(x)的单调区间是(,1,(2,3),(1,2,3,),其中(,1,(2,3)是减区间;(1,2,3,)是增区间.(3)由f(x)的图象知,当0m1时,f(x)m有四个不相等的实根,所以Mm|0m1.【点睛】(1)函数零点个数(方程根的个数)的判断方法:结合零点存在性定理,利用函数的单调性、对称性确定函数零点个数;利用函数图像交点个数判断方程
13、根的个数或函数零点个数(2)本题将方程实根个数的问题转化为两函数图象交点的问题解决,解题时注意换元法的应用,以便将复杂的问题转化为简单的问题处理。18、【解析】分别用体积表示其面积,再比较大小。【详解】解:设球的半径为R、正方体的棱长为a,等边圆柱的底面半径为r,且它们的体积都为V,则:V=,【点睛】分别用体积表示其面积,再比较大小。19、(1)(2)(3) 增区间为在【解析】(1)由分段函数求值问题,讨论落在哪一段中,再根据函数值即可得实数的取值范围;(2)由分段函数值域问题,由函数的值域可得,再求出实数的取值范围;(3)先阅读题意,再由导数的几何意义求得,再利用导数研究函数的单调性即可.【
14、详解】解: (1)由,且时,当时,有时, ,与题设矛盾,当时,有时,与题设相符,故实数的取值范围为:;(2)当,因为,所以,即,当,因为,所以,即,又由题意有,所以,故实数的取值范围为;(3)由的导函数为,由导数的几何意义可得函数在任一点处的导数即为曲线在这一点处切线的斜率,由限制函数的定义可知,由,即函数在为增函数,故函数在为增函数.【点睛】本题考查了分段函数求值问题、分段函数值域问题及导数的几何意义,重点考查了阅读理解能力,属中档题.20、 (1);(2);(3)【解析】(1)利用圆锥体积可求得圆锥的高,进而得到母线长,根据圆锥侧面积公式可求得结果;(2)作交圆锥底面圆于点,则即为异面直线
15、与所成角,在中,求解出三边长,利用余弦定理可求得,从而得到结果;(3)根据截面面积之比可得底面积之比,求得,进而求得等边三角形的边长,利用正棱锥的特点可知若为的中心,则即为侧棱与底面所成角,在中利用正切值求得结果.【详解】(1)设圆锥高为,母线长为由圆锥体积得: 圆锥的侧面积:(2)作交圆锥底面圆于点,连接,则即为异面直线与所成角由题意知:,又 即异面直线与所成角为:(3)平行于平面M的一个平面N截得三棱锥与圆锥的截面面积之比为 又 ,即为边长为的等边三角形设为的中心,连接,则三棱锥为正三棱锥 平面即为侧棱与底面所成角 即侧棱与底面所成角为:【点睛】本题考查圆锥侧面积的求解、异面直线所成角的求
16、解、直线与平面所成角的求解.解决立体几何中的角度问题的关键是能够通过平移找到异面直线所成角、通过找到直线在平面内的投影,得到线面角.21、(1)(2)【解析】分析:将代入,求出的表达式,求导,然后综合只有一个极值点即可求出结果法一:将代入,求导后利用单调性来求解;法二:整体思想,采用放缩法进行求解详解:()当时, 因为在定义域内有且只有一个极值点,所以在内有且仅有一根,则有图知,所以 (),法1: 因,恒成立,则内,先必须递增,即先必须,即先必须,因其对称轴,有图知(此时在 ),所以 法2: 因,所以,所以, 令,因, ,所以递增,所以, 点睛:本题考查了含有参量的导数极值问题和恒成立问题,在解答此类题目时将参数代入,然后根据题意进行转化,结合导数的单调性进行证明,本题有一定难度。 22、 (1) 函数在最大值是2,最小值是;(2) 【解析】(1)代入
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版瓷砖行业展会赞助合同3篇
- 2024泰州旅游行业员工劳动合同标准范本2篇
- 2024标的为800万元的物流服务合同
- 2025年度绿色节能产品展销会参展服务合同书3篇
- 二零二五年度高层管理人才派遣服务合同2篇
- 2025年度集装箱金融服务合同含融资与结算3篇
- 2024版纱窗订购合同范本
- 2025年度钢材企业兼并收购合同2篇
- 2024版担保个人借款协议
- 二手房一次性付款买卖合同版
- 2024年中考复习-数学(广州专用)(解析版)
- 第三十六届全国电力行业风力发电运行检修职业技能竞赛基础理论题库附有答案
- 2024年纪检监察综合业务知识题库含答案(研优卷)
- 科室医疗质量与安全管理小组工作制度
- 中华民族共同体概论课件第五讲大一统与中华民族共同体初步形成(秦汉时期)
- 初二生地会考试卷及答案-文档
- 私营企业廉洁培训课件
- 施工单位值班人员安全交底和要求
- 中国保险用户需求趋势洞察报告
- 数字化转型指南 星展银行如何成为“全球最佳银行”
- 中餐烹饪技法大全
评论
0/150
提交评论