版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1一元二次不等式的解集为()ABCD2若双曲线的一条渐近线经过点,则此双曲线的离心率为( )ABCD3已知函数,则函数的定义域为( )ABCD4玲玲到保山旅游,打电话给大学同学姗姗,忘记了电话号码的后两位,只记得最后一位是6,8,9中的一个数
2、字,则玲玲输入一次号码能够成功拨对的概率是()A13B110C15设随机变量X的分布列如下:则方差D (X)()ABCD6已知集合,则()ABCD7在极坐标系中,圆的圆心的极坐标是()ABCD8已知是定义在上的偶函数,且,当时,则不等式的解集是( )ABCD以上都不正确9的展开式中,系数最小的项为( )A第6项B第7项C第8项D第9项10的展开式中的项的系数是 ( )ABCD11定义在R上的函数f(x)满足f(-x)=-f(x),f(x)=f(x+4),且x(-1,0)时, f(x)=2x+A1 B45 C-1 D12某中学从4名男生和3名女生中推荐4人参加某高校自主招生考试,若这4人中必须既
3、有男生又有女生,则不同的选法共有( )A34 种B35 种C120 种D140 种二、填空题:本题共4小题,每小题5分,共20分。13观察如图等式,照此规律,第个等式为_. 14已知直线经过点,且点到的距离等于,则直线的方程为_15某中学开设A类选修课4门,B类选修课5门,C类选修课2门,每位同学从中共选4门课,若每类课程至少选一门,则不同的选法共有_种.16已知,且复数是纯虚数,则_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数.(1)当时,求证:在上是单调递减函数;(2)若函数有两个正零点、,求的取值范围,并证明:.18(12分)现在很多人喜欢自助游
4、,2017年孝感杨店桃花节,美丽的桃花风景和人文景观迎来众多宾客.某调查机构为了了解“自助游”是否与性别有关,在孝感桃花节期间,随机抽取了人,得如下所示的列联表:赞成“自助游”不赞成“自助游”合计男性女性合计(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整,并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?(2)若以抽取样本的频率为概率,从旅游节大量游客中随机抽取人赠送精美纪念品,记这人中赞成“自助游”人数为,求的分布列和数学期望. 附: 19(12分) 已知函数f(x)|xa|x2|.(1)当a3时,求不等式f(x)3的解集;(
5、2)若f(x)|x4|的解集包含1,2,求a的取值范围20(12分)已知定义在上的函数.(1)若的最大值为3,求实数的值;(2)若,求的取值范围.21(12分)某企业响应省政府号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.如图是设备改造前的样本的频率分布直方图,表是设备改造后的样本的频数分布表.表:设备改造后样本的频数分布表质量指标值频数(1)完成下面的列联表,并判断是否有的把握认为该企业生产的这种产品的质量指标值与设备改造有关;设备改造前设备改造后合计合
6、格品不合格品合计(2)根据频率分布直方图和表 提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;(3)企业将不合格品全部销毁后,根据客户需求对合格品进行登记细分,质量指标值落在内的定为一等品,每件售价元;质量指标值落在或内的定为二等品,每件售价元;其它的合格品定为三等品,每件售价元.根据表的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.现有一名顾客随机购买两件产品,设其支付的费用为(单位:元),求的分布列和数学期望.附:22(10分)已知函数f(x)=ln|x|当x0时,求函数y=g(x若a0,函数y=g(x)在0,+上的最
7、小值是2 ,求在的条件下,求直线y=23x+参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据一元二次不等式的解法,即可求得不等式的解集,得到答案【详解】由题意,不等式,即或,解得,即不等式的解集为,故选C【点睛】本题主要考查了一元二次不等式的解法,其中解答中熟记一元二次不等式的解法是解答的关键,着重考查了推理与计算能力,属于基础题2、D【解析】因为双曲线的一条渐近线经过点(3,-4),故选D.考点:双曲线的简单性质【名师点睛】渐近线是双曲线独特的性质,在解决有关双曲线问题时,需结合渐近线从数形结合上找突破口.与渐近
8、线有关的结论或方法还有:(1)与双曲线共渐近线的可设为;(2)若渐近线方程为,则可设为;(3) 双曲线的焦点到渐近线的距离等于虚半轴长;(4)的一条渐近线的斜率为.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小另外解决不等式恒成立问题关键是等价转化,其实质是确定极端或极限位置.3、B【解析】根据对数的真数大于零,负数不能开偶次方根,分母不能为零求解.【详解】因为函数,所以,所以,解得,所以的定义域为.故选:B【点睛】本题主要考查函数定义域的求法,还考查了运算求解的能力,属于基础题.4、D【解析】由分步计数原理和古典概型求得概率【详解】由题意可知,最后一位有3种可能,倒数第2位有1
9、0种可能,根据分步计数原理总共情况为N=310=30,满足情况只有一种,概率为P=1【点睛】利用排列组合计数时,关键是正确进行分类和分步,分类时要注意不重不漏.在本题中,只有两个号码都拔完这种事情才完成,所以是分步计数原理5、B【解析】分析:先求出的值,然后求出,利用公式求出详解:故选点睛:本题考查了随机变量的分布列的相关计算,解答本题的关键是熟练掌握随机变量的期望与方差的计算方法6、D【解析】,所以,故选B7、B【解析】先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可【详解】圆化为,,配方为 ,因此圆心直角坐标为,可得圆心的极坐标为故选B【点睛】本题考查极坐标方程与直
10、角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础8、C【解析】令,则当时:,即函数在上单调递增,由可得:当时,;当时,;不等式在上的解集为,同理,不等式在上的解集为,综上可得:不等式的解集是.9、C【解析】由题设可知展开式中的通项公式为,其系数为,当为奇数时展开式中项的系数最小,则,即第8项的系数最小,应选答案C。10、B【解析】试题分析:的系数,由的次项乘以,和的2次项乘以的到,故含的是,选.考点:二项式展开式的系数.【方法点睛】二项式展开式在高考中是一个常考点.两个式子乘积相关的二项式展开式,首先考虑的是两个因式相乘,每个项都要相互乘一次,这样就可以分解成乘以常数和乘以一次项两种情况
11、,最后将两种情况球出来的系数求和.如要求次方的系数,计算方法就是,也就是说,有两个是取的,剩下一个就是的.11、C【解析】试题分析:由于,因此函数为奇函数,故函数的周期为4,即,故答案为C考点:1、函数的奇偶性和周期性;2、对数的运算12、A【解析】分析:根据题意,选用排除法,分3步,计算从7人中,任取4人参加志愿者活动选法,计算选出的全部为男生或女生的情况数目,由事件间的关系,计算可得答案详解:分3步来计算,从7人中,任取4人参加志愿者活动,分析可得,这是组合问题,共C74=35种情况;选出的4人都为男生时,有1种情况,因女生只有3人,故不会都是女生,根据排除法,可得符合题意的选法共35-1
12、=34种;故选A点睛:本题考查计数原理的运用,注意对于本类题型,可以使用排除法,即当从正面来解所包含的情况比较多时,则采取从反面来解,用所有的结果减去不合题意的结果二、填空题:本题共4小题,每小题5分,共20分。13、.【解析】分析:由题意结合所给等式的规律归纳出第个等式即可.详解:首先观察等式左侧的特点:第1个等式开头为1,第2个等式开头为2,第3个等式开头为3,第4个等式开头为4,则第n个等式开头为n,第1个等式左侧有1个数,第2个等式左侧有3个数,第3个等式左侧有5个数,第4个等式左侧有7个数,则第n个等式左侧有2n-1个数,据此可知第n个等式左侧为:,第1个等式右侧为1,第2个等式右侧
13、为9,第3个等式右侧为25,第4个等式右侧为49,则第n个等式右侧为,据此可得第个等式为.点睛:归纳推理是由部分到整体、由特殊到一般的推理,由归纳推理所得的结论不一定正确,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法14、或【解析】当直线的斜率不存在时,直线的方程为,不成立;当直线的斜率存在时,直线的方程为,由点到的距离等于,解得或,由此能求出直线的方程。【详解】直线经过点,当直线的斜率不存在时,直线的方程为,点到的距离等于,不成立;当直线的斜率存在时,直线的方程为,即,点到的距离等于,解得或,直线的方程为或,即或 故答案为:或【点睛】
14、本题考查点斜式求直线方程以及点到直线的距离公式,在求解时注意讨论斜率存在不存在,属于常规题型。15、160【解析】每位同学共选4门课,每类课程至少选一门,则必有某类课程选2门,另外两类课程各选1门,对选2门的这类课程进行分类,可能是A类,可能是B类,可能是C类.【详解】(1)当选2门的为A类,N1(2)当选2门的为B类,N2(3)当选2门的为C类,N3选法共有N1【点睛】分类与分步计数原理,要确定好分类与分步的标准,本题对选2门课程的课程类进行分类,再对每一类情况分3步考虑.16、【解析】由复数的运算法则可得,结合题意得到关于的方程,解方程即可确定实数的值.【详解】由复数的运算法则可得:,复数
15、为纯虚数,则:,据此可得:.故答案为【点睛】本题主要考查复数的运算法则,纯虚数的概念及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见证明;(2)实数的取值范围是,证明见解析.【解析】(1)由题意得出在区间上恒成立,由得出,构造函数,证明在区间上恒成立即可;(2)由利用参变量分离法得出,将题意转化为当直线与函数在上有两个交点时求的取值范围,利用数形结合思想求解即可,然后由题意得出,取自然对数得,等式作差得,利用分析得出所证不等式等价于,然后构造函数证明即可.【详解】(1),.由题意知,不等式在区间上恒成立,由于,当
16、时,构造函数,其中,则,令,得.当时,;当时,.所以,函数在处取得极大值,亦即最大值,即,所以,.所以,不等式在区间上恒成立,因此,当时,函数在上是单调递减函数;(2)令,可得令,则.当时,当时,.当时,函数单调递减,当时,函数单调递增.,当时,当时.时,函数有两个正零点,因此,实数的取值范围是.由上知时,由题意得,上述等式两边取自然对数得,两式作差得,要证,即证.由于,则,即证,即证,令,即证,其中.构造函数,其中,即证在上恒成立.,所以,函数在区间上恒成立,所以,因此,.【点睛】本题考查利用导数证明函数的单调性,以及利用导数研究函数的零点问题,同时也考查了利用导数证明函数不等式,难点在于构
17、造新函数,借助新函数的单调性来证明,考查化归与转化数学思想的应用,属于难题.18、 (1)赞成“自助游”不赞成“自助游”合计男性女性合计在犯错误的概率不超过前提下,不能认为赞成“自助游”与性别有关系. (2)的分布列为:期望.【解析】试题分析:(1)根据分层抽样比为,可知女性共55人,从而可以知难行45人,即可填表,计算卡方,得出结论;(2)由题意知随机变量服从二项分布,从而利用公式计算分布列和期望试题解析:(1)赞成“自助游”不赞成“自助游”合计男性女性合计将列联表中的数据代入计算,得的观测值: ,在犯错误的概率不超过前提下,不能认为赞成“自助游”与性别有关系 (2)的所有可能取值为:,依题
18、意,的分布列为: 19、 (1) x|x4或x1;(2) 3,0.【解析】试题分析:(1)解绝对值不等式首先分情况去掉绝对值不等式组,求出每个不等式组的解集,再取并集即得所求(2)原命题等价于-2-xa2-x在1,2上恒成立,由此求得求a的取值范围试题解析:(1)当a3时,f(x)当x2时,由f(x)3得2x53,解得x1;当2x3时,f(x)3无解;当x3时,由f(x)3得2x53,解得x4.所以f(x)3的解集为x|x1或x4 6分(2)f(x)|x4|x4|x2|xa|.当x1,2时,|x4|x2|xa|(4x)(2x)|xa|2ax2a,由条件得2a1且2a2,解得3a0,故满足条件的
19、实数a的取值范围为3,0考点:绝对值不等式的解法;带绝对值的函数20、(1)-1或3(2)【解析】(1)由绝对值不等式得,于是令可得答案;(2)先计算,再分和两种情况可得到答案.【详解】(1)由绝对值不等式得令,得或解得或解得不存在,故实数的值为-1或3(2)由于,则,当时,由得,当时,由得,此种情况不存在,综上可得:的取值范围为【点睛】本题主要考查绝对值不等式的相关计算,意在考查学生的转化能力,分析能力,对学生的分类讨论的能力要求较高,难度较大.21、 (1)列联表见解析; 有的把握认为该企业生产的这种产品的质量指标值与设备改造有关(2)设备改造后性能更优(3)分布列见解析;.【解析】分析:(1)根据设备改造前的样本的频率分布直方图和设备改造后的样本的频数分布表完成列联表,求出,与临界值比较即可得结果;(2)根据频率分布直方图和频数分布表,可得到设备改造前产品为合格品的概率和设备改造后产品为合格品的概率,从而可得结果;(3)随
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度产品代理销售合同标的及属性
- 2024年彩钢房结构优化与改造合同
- 2024光伏发电站水电输送系统承包合同
- 贵阳元宵节灯会环保措施方案
- 汽车售后服务客户反馈制度
- 煤矿运输事故应急预案
- 文化创意行业青年人才发展方案
- 豪华别墅大门设计与施工方案
- 2024年应收账款权利质押合同
- 2024个人与家政公司关于家政服务合同
- 2024年11月绍兴市2025届高三选考科目诊断性考试(一模) 化学试卷(含答案)
- 青蓝工程师傅工作计划(7篇)
- 2024年福建省漳州市台商投资区招聘77人历年高频难、易错点500题模拟试题附带答案详解
- 2022年公务员国考《申论》真题(副省级)及参考答案
- 中药融资方案
- 六年级计算题 分数混合运算专项练习430题
- 2024年第四季度中国酒店市场景气调查报告-浩华
- 2024年二级建造师继续教育考核题及答案
- 安徽省鼎尖教育联考2024-2025学年高二上学期开学考试物理
- 2021-2022学年统编版道德与法治五年级上册全册单元测试题及答案(每单元1套共6套)
- 中小学心理健康教育课程标准
评论
0/150
提交评论