2021-2022学年沧州市重点中学高二数学第二学期期末调研模拟试题含解析_第1页
2021-2022学年沧州市重点中学高二数学第二学期期末调研模拟试题含解析_第2页
2021-2022学年沧州市重点中学高二数学第二学期期末调研模拟试题含解析_第3页
2021-2022学年沧州市重点中学高二数学第二学期期末调研模拟试题含解析_第4页
2021-2022学年沧州市重点中学高二数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1由曲线与直线,所围成的封闭图形面积为( )ABC2D2若直线的倾斜角为,则( )A等于B等于C等于D不存在3双曲线的渐近线方程为( )ABCD4已知复数为虚数单位,是的共轭复数,则( )ABCD5已知关于的实系数一元二次方程的一个根在复平面

2、上对应点是,则这个方程可以是( )ABCD6设是定义在上的奇函数,且,当时,有恒成立,则不等式的解集是( )A B C D7已知,“函数有零点”是“函数在上是减函数”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条件8已知定义在上的奇函数,满足,当时,若函数,在区间上有10个零点,则的取值范围是( )ABCD9某学校为了调查高三年级的200名文科学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取20名同学进行调查;第二种由教务处对该年级的文科学生进行编号,从001到200,抽取学号最后一位为2的同学进行调查,则这两种抽样的方法依次为( )A分

3、层抽样,简单随机抽样B简单随机抽样, 分层抽样C分层抽样,系统抽样D简单随机抽样,系统抽样10 “大衍数列”来源于乾坤谱中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题.大衍数列前10项依次是0,2,4,8,12,18,24,32,40,50,则此数列第20项为( )A180B200C128D16211若复数是纯虚数,则的共轭复数在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限12函数图象交点的横坐标所在区间是( )A(1,2)B(2,3

4、)C(3,4)D(1,5)二、填空题:本题共4小题,每小题5分,共20分。13为虚数单位,若复数是纯虚数,则实数_.14如图,圆形纸片的圆心为O,半径为5 cm,该纸片上的等边三角形ABC的中心为O.D,E,F为圆O上的点,DBC,ECA,FAB分别是以BC,CA,AB为底边的等腰三角形沿虚线剪开后,分别以BC,CA,AB为折痕折起DBC,ECA,FAB,使得D,E,F重合,得到三棱锥当ABC的边长变化时,所得三棱锥体积(单位:cm3)的最大值为_15聊斋志异中有这样一首诗:“挑水砍柴不堪苦,请归但求穿墙术.得诀自诩无所阻,额上坟起终不悟.”在这里,我们称形如以下形式的等式具有“穿墙术”:,则

5、按照以上规律,若具有“穿墙术”,则_.16一支田径队有男运动员56人,女运动员42人,用分层抽样的方法,按性别从全体运动员中抽出一个容量为7的样本,则抽出的女运动员的人数是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某技术人员在某基地培育了一种植物,一年后,该技术人员从中随机抽取了部分这种植物的高度(单位:厘米)作为样本(样本容量为)进行统计,绘制了如下频率分布直方图,已知抽取的样本植物高度在内的植物有8株,在内的植物有2株.()求样本容量和频率分布直方图中的,的值;()在选取的样本中,从高度在内的植物中随机抽取3株,设随机变量表示所抽取的3株高度在内的株数,

6、求随机变量的分布列及数学期望;()据市场调研,高度在内的该植物最受市场追捧.老王准备前往该基地随机购买该植物50株.现有两种购买方案,方案一:按照该植物的不同高度来付费,其中高度在内的每株10元,其余高度每株5元;方案二:按照该植物的株数来付费,每株6元.请你根据该基地该植物样本的统计分析结果为决策依据,预测老王采取哪种付费方式更便宜?18(12分)某食品厂为了检查一条自动包装流水线的生产情况,随即抽取该流水线上件产品作为样本算出他们的重量(单位:克)重量的分组区间为,由此得到样本的频率分布直方图,如图所示(1)根据频率分布直方图,求重量超过克的产品数量(2)在上述抽取的件产品中任取件,设为重

7、量超过克的产品数量,求的分布列(3)从流水线上任取件产品,求恰有件产品合格的重量超过克的概率19(12分)现计划用两张铁丝网在一片空地上围成一个梯形养鸡场,已知两段是由长为的铁丝网折成,两段是由长为的铁丝网折成.设上底的长为,所围成的梯形面积为.(1)求S关于x的函数解析式,并求x的取值范围;(2)当x为何值时,养鸡场的面积最大?最大面积为多少?20(12分)已知函数. (1)证明:函数在内存在唯一零点;(2)已知,若函数有两个相异零点,且(为与无关的常数),证明:.21(12分)(学年上海市杨浦区高三数学一模)如图所示,用总长为定值的篱笆围成长方形的场地,以墙为一边,并用平行于一边的篱笆隔开

8、.(1)设场地面积为,垂直于墙的边长为,试用解析式将表示成的函数,并确定这个函数的定义域;(2)怎样围才能使得场地的面积最大?最大面积是多少?22(10分)(江苏省南通市高三最后一卷 - 备用题数学试题)已知函数,其中.(1)当时,求函数处的切线方程;(2)若函数存在两个极值点,求的取值范围;(3)若不等式对任意的实数恒成立,求实数的取值范围.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据题意作出所围成的图形,如图所示,图中从左至右三个交点分别为,所以题中所求面积为 ,故选D2、C【解析】分析:根据画出的直线得直

9、线的倾斜角.详解:直线x=1的倾斜角为故答案为:C.点睛:(1)本题主要考查特殊直线的倾斜角,意在考查学生对该知识的掌握水平.(2)任意一条直线都有倾斜角,但是不是每一条直线都有斜率.3、B【解析】先判断双曲线的焦点位置,然后得到渐近线方程的一般形式,再根据的值直接写出渐近线方程.【详解】因为双曲线的焦点在轴上,所以双曲线的渐近线方程为,又因为,所以渐近线方程为.故选:B.【点睛】本题考查双曲线渐近线方程的求解,难度较易.双曲线的实轴长为,虚轴长为,若焦点在轴上,则渐近线方程为,若焦点在轴上,则渐近线方程为;求解双曲线渐近线方程的另一种方法:直接将双曲线方程中的变为,由此得到的关系式即为渐近线

10、方程.4、C【解析】 ,选C.5、A【解析】先由题意得到方程的两复数根为,(为虚数单位),求出,根据选项,即可得出结果.【详解】因为方程的根在复平面内对应的点是,可设根为:,(为虚数单位),所以方程必有另一根,又,根据选项可得,该方程为.故选A【点睛】本题主要考查复数的方程,熟记复数的运算法则即可,属于常考题型.6、B【解析】试题分析:因为当时,有恒成立,所以恒成立,所以在内单调递减因为,所以在内恒有;在内恒有又因为是定义在上的奇函数,所以在内恒有;在内恒有又因为不等式的解集,即不等式的解集,由上分析可得,其解集为,故应选考点:1、函数的基本性质;2、导数在研究函数的单调性中的应用【思路点睛】

11、本题主要考查了函数的基本性质和导数在研究函数的单调性中的应用,属中档题其解题的一般思路为:首先根据商函数求导法则可知化为;然后利用导数的正负性可判断函数在内的单调性;再由可得函数在内的正负性;最后结合奇函数的图像特征可得,函数在内的正负性,即可得出所求的解集7、B【解析】试题分析:由题意得,由函数有零点可得,而由函数在上为减函数可得,因此是必要不充分条件,故选B考点:1.指数函数的单调性;2.对数函数的单调性;3.充分必要条件.8、A【解析】由得出函数的图象关于点成中心对称以及函数的周期为,由函数为奇函数得出,并由周期性得出,然后作出函数与函数的图象,列举前个交点的横坐标,结合第个交点的横坐标

12、得出实数的取值范围【详解】由可知函数的图象关于点成中心对称,且,所以,所以,函数的周期为,由于函数为奇函数,则,则,作出函数与函数的图象如下图所示:,则,于是得出,由图象可知,函数与函数在区间上从左到右个交点的横坐标分别为、,第个交点的横坐标为,因此,实数的取值范围是,故选A【点睛】本题考查方程的根与函数的零点个数问题,一般这类问题转化为两个函数图象的交点个数问题,在画函数的图象时,要注意函数的奇偶性、对称性、周期性对函数图象的影响,属于难题9、D【解析】第一种抽样是简单随机抽样,简单随机抽样是指从样本中随机抽取一个,其特点是容量不要太多第二种是系统抽样,系统抽样就是指像机器一样的抽取物品,每

13、隔一段时间或距离抽取一个而分层抽样,必需是有明显的分段性,然后按等比例进行抽取故选D10、B【解析】根据前10项可得规律:每两个数增加相同的数,且增加的数构成首项为2,公差为2的等差数列。可得从第11项到20项为60,72,84,98,112,128,144,162,180,200.所以此数列第20项为200.故选B。【点睛】从前10个数观察增长的规律。11、C【解析】由纯虚数的定义和三角恒等式可求得,根据二倍角公式求得;根据复数的几何意义可求得结果.【详解】为纯虚数,即,对应点的坐标为,位于第二象限.则的共轭复数在复平面内对应的点位于第三象限故选:.【点睛】本题考查复数对应点的坐标的问题的求

14、解,涉及到同角三角函数值的求解、二倍角公式的应用、复数的几何意义等知识.12、C【解析】试题分析:设的零点在区间与图象交点的横坐标所在区间是,故选C考点:曲线的交点【方法点晴】本题考曲线的交点,涉及数形结合思想、函数与方程思想和转化化归思想,以及逻辑思维能力、等价转化能力、运算求解能力、综合程度高,属于较难题型二、填空题:本题共4小题,每小题5分,共20分。13、-1【解析】分析:利用纯虚数的定义直接求解详解:复数是纯虚数, ,解得 故答案为-1点睛:本题考实数值的求法,是基础题,解题时要认真审题,注意纯虚数的定义的合理运用14、【解析】如下图,连接DO交BC于点G,设D,E,F重合于S点,正

15、三角形的边长为x(x0),则., ,三棱锥的体积.设,x0,则,令,即,得,易知在处取得最大值.点睛:对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.15、24【解析】观察所告诉的式子,找出其中的规律,可得n的值.【详解】解:观察所给式子的规律可得:,故可得:.故答案为:24.【点睛】本题主要考查归纳推理,注意根据题中所给的式子找出规律进行推理.16、3【解析】直接根据分层抽样比例关系计算得到答案.【详解】根据题意:抽出的女运动员的人数为

16、.故答案为:.【点睛】本题考查了分层抽样,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、 (),,;()分布列见解析,;()方案一付费更便宜.【解析】() 由题目条件及频率分布直方图能求出样本容量n和频率分布直方图中的x,y() 由题意可知,高度在80,90)内的株数为5,高度在90,100内的株数为2,共7株抽取的3株中高度在80,90)内的株数X的可能取值为1,2,3,分别求出相应的概率,由此能求出X的分布列和E(X)()根据()所得结论,分别计算按照方案一购买应付费和按照方案二购买应付费,比较结果即可得按照方案一付费更便宜.【详解】() 由题意可知,样本

17、容量,,.()由题意可知,高度在80,90)内的株数为5,高度在90,100内的株数为2,共7株.抽取的3株中高度在80,90)内的株数X的可能取值为1,2,3,则,,X的分布列为:X123P故.()根据()所得结论,高度在内的概率为,按照方案一购买应付费元,按照方案二购买应付费元,故按照方案一付费更便宜.【点睛】本题考查频率分布直方图、分布列和数学期望,考查能否根据频率分布直方图得出每一组的概率以及一组的数据计算总体,求随机变量的分布列的主要步骤:明确随机变量的取值,并确定随机变量服从何种概率分布;求每一个随机变量取值的概率;列成表格,意在考查学生的转化能力和计算求解能力,属于中等题.18、

18、(1)件;(2)(3)【解析】(1)根据频率分布直方图得到超过克的频率,再求出产品数量;(2)先得到可取的值,再分别计算每个值的概率,写出分布列;(3)根据题意得到所取的件产品中,件超过克,件不超过克,从而得到所求的概率.【详解】(1)根据频率分布直方图可知:重量超过克的频率为:,所以重量超过克的产品数量为(件)(2)可取的值为,所以的分布列为:(3)利用样本估计总体,该流水线上重量超过克的概率为,令为任取5件产品中重量超过克的产品数量,则所以所求概率为.【点睛】本题考查根据频率分布直方图求频数,随机变量的分布列,求随机事件的概率,属于简单题.19、(1),(2)当x为时,养鸡场的面积最大,最

19、大为.【解析】(1)由已知条件的该梯形为等腰梯形,作出高,用含的代数式表示出上、下底和高,从而表示出面积;(2)利用导数最值求出最大值【详解】解:(1)由题意,过A点作,垂足为E,则,梯形的高由,解得.综上,(2)设,令,得(,舍去)时,单调递增,时,单调递减.当时,的最大值是1080000,此时.当为时,养鸡场的面积最大,最大为.【点睛】本题主要考察用函数模型解决实际问题,利用导数研究函数的单调性,属于基础题20、(1)证明见解析;(2)证明见解析【解析】(1)先利用导数确定单调性,再利用零点存在定理证明结论,(2)先求,再结合恒成立转化证明,即需证,根据条件消,令,转化证,即需证, 这个不等式利用导数易证.【详解】(1),令,则在上恒成立,所以,在上单调递减, ,根据零点存在定理得,函数在存在唯一零点, 当时,所以在存在唯一零点;(2)因为,所以, 不妨设,因为,所以,所以,因为,而要求满足的b的最大值,所以只需证明.所以(*)令,则,所以(*),令,则, 所以在上单调递增,即综上,.【点睛】本题考查利用导数研究函数零点以及利用导数证明不等式,考查综合分析论证能力,属难题.21、(1),;(2)时,.【解析】(1)设平行于墙的边长为,则篱笆总长

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论