版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、河南省新乡市长垣市市级名校2023年中考测试卷猜想数学试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1研究表明
2、某流感病毒细胞的直径约为0.00000156m,用科学记数法表示这个数是( )A0.156105B0.156105C1.56106D1.561062如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是()ABCD3如图,已知E,B,F,C四点在一条直线上,添加以下条件之一,仍不能证明的是ABCD4把三角形按如图所示的规律拼图案,其中第个图案中有1个三角形,第个图案中有4个三角形,第个图案中有8个三角形,按此规律排列下去,则第个图案中三角形的个数为()A15B17C19D245如图钓鱼竿AC长6m,露在水面上的鱼线BC长3m,钓者想看看鱼钓上的情况,把鱼竿AC逆时针转动15到AC的位置
3、,此时露在水面上的鱼线BC长度是()A3mB mC mD4m6在下列函数中,其图象与x轴没有交点的是()Ay=2xBy=3x+1Cy=x2Dy=7如图所示的几何体是由4 个大小相同的小立方体搭成,其俯视图是( )ABCD8关于ABCD的叙述,不正确的是()A若ABBC,则ABCD是矩形B若ACBD,则ABCD是正方形C若ACBD,则ABCD是矩形D若ABAD,则ABCD是菱形9如图,小颖为测量学校旗杆AB的高度,她在E处放置一块镜子,然后退到C处站立,刚好从镜子中看到旗杆的顶部B已知小颖的眼睛D离地面的高度CD1.5m,她离镜子的水平距离CE0.5m,镜子E离旗杆的底部A处的距离AE2m,且A
4、、C、E三点在同一水平直线上,则旗杆AB的高度为()A4.5mB4.8mC5.5mD6 m10如图是一个由5个相同的正方体组成的立体图形,它的俯视图是()ABCD二、填空题(共7小题,每小题3分,满分21分)11两圆内切,其中一个圆的半径长为6,圆心距等于2,那么另一个圆的半径长等于_12在平面直角坐标系中,点A1,A2,A3和B1,B2,B3分别在直线y=和x轴上,OA1B1,B1A2B2,B2A3B3都是等腰直角三角形则A3的坐标为_.13如图(a),有一张矩形纸片ABCD,其中AD=6cm,以AD为直径的半圆,正好与对边BC相切,将矩形纸片ABCD沿DE折叠,使点A落在BC上,如图(b)
5、.则半圆还露在外面的部分(阴影部分)的面积为_14如图,在边长为1正方形ABCD中,点P是边AD上的动点,将PAB沿直线BP翻折,点A的对应点为点Q,连接BQ、DQ则当BQ+DQ的值最小时,tanABP_15若am=2,an=3,则am + 2n =_16已知同一个反比例函数图象上的两点、,若,且,则这个反比例函数的解析式为_17如图,AB为O的直径,弦CDAB于点E,已知CD6,EB1,则O的半径为_三、解答题(共7小题,满分69分)18(10分)对于平面直角坐标系中的点,将它的纵坐标与横坐标的比称为点的“理想值”,记作如的“理想值”(1)若点在直线上,则点的“理想值”等于_;如图,的半径为
6、1若点在上,则点的“理想值”的取值范围是_(2)点在直线上,的半径为1,点在上运动时都有,求点的横坐标的取值范围;(3),是以为半径的上任意一点,当时,画出满足条件的最大圆,并直接写出相应的半径的值(要求画图位置准确,但不必尺规作图)19(5分)先化简分式: (-),再从-3、-3、2、-2中选一个你喜欢的数作为的值代入求值20(8分)某制衣厂某车间计划用10天加工一批出口童装和成人装共360件,该车间的加工能力是:每天能单独加工童装45件或成人装30件(1)该车间应安排几天加工童装,几天加工成人装,才能如期完成任务;(2)若加工童装一件可获利80元, 加工成人装一件可获利120元, 那么该车
7、间加工完这批服装后,共可获利多少元21(10分)如图,大楼AB的高为16m,远处有一塔CD,小李在楼底A处测得塔顶D处的仰角为 60,在楼顶B处测得塔顶D处的仰角为45,其中A、C两点分别位于B、D两点正下方,且A、C两点在同一水平线上,求塔CD的高(=1.73,结果保留一位小数)22(10分)如图,以ABC的一边AB为直径作O, O与BC边的交点D恰好为BC的中点,过点D作O的切线交AC边于点E(1) 求证:DEAC;(2) 连结OC交DE于点F,若,求的值23(12分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字1,2,3,4,5,6,如图2,正方形ABCD的顶点处各有一个圈,跳
8、圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落在圈D;若第二次掷得2,就从圈D开始顺时针连续跳2个边长,落得圈B;设游戏者从圈A起跳.小贤随机掷一次骰子,求落回到圈A的概率P1.小南随机掷两次骰子,用列表法求最后落回到圈A的概率P2,并指出他与小贤落回到圈A的可能性一样吗?24(14分)如图,在ABC中,ACB=90,O是边AC上一点,以O为圆心,以OA为半径的圆分别交AB、AC于点E、D,在BC的延长线上取点F,使得BF=EF(1)判断直线EF与O的位置关系,并说明理由;(2
9、)若A=30,求证:DG=DA;(3)若A=30,且图中阴影部分的面积等于2,求O的半径的长2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【答案解析】解:,故选C.2、D【答案解析】测试卷分析:根据三视图的法则可知B为俯视图,D为主视图,主视图为一个正方形.3、B【答案解析】由EB=CF,可得出EF=BC,又有A=D,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明ABCDEF,那么添加的条件与原来的条件可形成SSA,就不能证明ABCDEF了【题目详解】添加,根据AAS能证明,故A选项不符合题意B.添加与原条件满足SS
10、A,不能证明,故B选项符合题意;C.添加,可得,根据AAS能证明,故C选项不符合题意;D.添加,可得,根据AAS能证明,故D选项不符合题意,故选B【答案点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角4、D【答案解析】由图可知:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第个图案有三角形1+3+4+412,第n个图案有三角形4(n1)个(n1时),由此得出规律解决问题【题目详解
11、】解:解:第个图案有三角形1个,第图案有三角形1+34个,第个图案有三角形1+3+48个,第n个图案有三角形4(n1)个(n1时),则第个图中三角形的个数是4(71)24个,故选D【答案点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出an4(n1)是解题的关键5、B【答案解析】因为三角形ABC和三角形ABC均为直角三角形,且BC、BC都是我们所要求角的对边,所以根据正弦来解题,求出CAB,进而得出CAB的度数,然后可以求出鱼线BC长度【题目详解】解:sinCABCAB45CAC15,CAB60sin60,解得:BC3故选:B【答案点睛】此题主要考查了解直角三角形的应用,解
12、本题的关键是把实际问题转化为数学问题6、D【答案解析】依据一次函数的图象,二次函数的图象以及反比例函数的图象进行判断即可【题目详解】A正比例函数y=2x与x轴交于(0,0),不合题意;B一次函数y=-3x+1与x轴交于(,0),不合题意;C二次函数y=x2与x轴交于(0,0),不合题意;D反比例函数y=与x轴没有交点,符合题意;故选D7、C【答案解析】测试卷分析:根据三视图的意义,可知俯视图为从上面往下看,因此可知共有三个正方形,在一条线上.故选C.考点:三视图8、B【答案解析】由矩形和菱形的判定方法得出A、C、D正确,B不正确;即可得出结论【题目详解】解:A、若ABBC,则是矩形,正确;B、
13、若,则是正方形,不正确;C、若,则是矩形,正确;D、若,则是菱形,正确;故选B【答案点睛】本题考查了正方形的判定、矩形的判定、菱形的判定;熟练掌握正方形的判定、矩形的判定、菱形的判定是解题的关键9、D【答案解析】根据题意得出ABECDE,进而利用相似三角形的性质得出答案【题目详解】解:由题意可得:AE2m,CE0.5m,DC1.5m,ABCEDC,DCAB即1.5AB解得:AB6,故选:D【答案点睛】本题考查的是相似三角形在实际生活中的应用,根据题意得出ABECDE是解答此题的关键10、C【答案解析】根据俯视图的概念可知, 只需找到从上面看所得到的图形即可.【题目详解】解: 从上面看易得: 有
14、2列小正方形, 第1列有2个正方形, 第2列有2个正方形,故选C.【答案点睛】考查下三视图的概念; 主视图、 左视图、 俯视图是分别从物体正面、 左面和上面看所得到的图形;二、填空题(共7小题,每小题3分,满分21分)11、4或1【答案解析】两圆内切,一个圆的半径是6,圆心距是2,另一个圆的半径=6-2=4;或另一个圆的半径=6+2=1,故答案为4或1【答案点睛】本题考查了根据两圆位置关系来求圆的半径的方法注意圆的半径是6,要分大圆和小圆两种情况讨论12、A3()【答案解析】设直线y=与x轴的交点为G,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,由条件可求得,再根据等腰三角形可
15、分别求得A1D、A2E、A3F,可得到A1,A2,A3的坐标.【题目详解】设直线y=与x轴的交点为G,令y=0可解得x=-4,G点坐标为(-4,0),OG=4,如图1,过点A1,A2,A3分别作x轴的垂线,垂足分别为D、E、F,A1B1O为等腰直角三角形,A1D=OD,又点A1在直线y=x+上,=,即=,解得A1D=1=()0,A1(1,1),OB1=2,同理可得=,即=,解得A2E=()1,则OE=OB1+B1E=,A2(,),OB2=5,同理可求得A3F=()2,则OF=5+=,A3(,);故答案为(,)【答案点睛】本题主要考查等腰三角形的性质和直线上点的坐标特点,根据题意找到点的坐标的变
16、化规律是解题的关键,注意观察数据的变化13、【答案解析】解:如图,作OHDK于H,连接OK,以AD为直径的半圆,正好与对边BC相切,AD=2CD根据折叠对称的性质,AD=2CDC=90,DAC=30ODH=30DOH=60DOK=120扇形ODK的面积为ODH=OKH=30,OD=3cm,ODK的面积为半圆还露在外面的部分(阴影部分)的面积是:故答案为:14、1【答案解析】连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQx解直角三角形得到AP1,根据三角函数的定义即可得到结论【题目详解】如图:连接DB,若Q点落在BD上,此时和最短,且为,设APx,则PD1x,PQxPD
17、Q45,PDPQ,即1x,x1,AP1,tanABP1,故答案为:1【答案点睛】本题考查了翻折变换(折叠问题),正方形的性质,轴对称最短路线问题,正确的理解题意是解题的关键15、18【答案解析】运用幂的乘方和积的乘方的运算法则求解即可.【题目详解】解:am=2,an=3,a3m+2n=(am)3(an)2=2332=1故答案为1【答案点睛】本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键16、y=【答案解析】解:设这个反比例函数的表达式为y=P1(x1,y1),P2(x2,y2)是同一个反比例函数图象上的两点,x1y1=x2y2=k,=,=,=,=,k=2(x2x1)x2=x1+2,
18、x2x1=2,k=22=4,这个反比例函数的解析式为:y=故答案为y=点睛:本题考查了反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积应等于比例系数同时考查了式子的变形17、1【答案解析】解:连接OC,AB为O的直径,ABCD,CE=DE=CD=6=3,设O的半径为xcm,则OC=xcm,OE=OBBE=x1,在RtOCE中,OC2=OE2+CE2,x2=32+(x1)2,解得:x=1,O的半径为1,故答案为1【答案点睛】本题利用了垂径定理和勾股定理求解,熟练掌握并应用定理是解题的关键三、解答题(共7小题,满分69分)18、(1)3;(2);(3)【答案解析】(1)把Q(1,
19、a)代入y=x-4,可求出a值,根据理想值定义即可得答案;由理想值越大,点与原点连线与轴夹角越大,可得直线与相切时理想值最大,与x中相切时,理想值最小,即可得答案;(2)根据题意,讨论与轴及直线相切时,LQ 取最小值和最大值,求出点横坐标即可;(3)根据题意将点转化为直线,点理想值最大时点在上,分析图形即可【题目详解】(1)点在直线上,点的“理想值”=-3,故答案为:3.当点在与轴切点时,点的“理想值”最小为0.当点纵坐标与横坐标比值最大时,的“理想值”最大,此时直线与切于点,设点Q(x,y),与x轴切于A,与OQ切于Q,C(,1),tanCOA=,COA=30,OQ、OA是的切线,QOA=2
20、COA=60,=tanQOA=tan60=,点的“理想值”为,故答案为:.(2)设直线与轴、轴的交点分别为点,点,当x=0时,y=3,当y=0时,x+3=0,解得:x=,tanOAB=,如图,作直线当与轴相切时,LQ=0,相应的圆心满足题意,其横坐标取到最大值作轴于点,的半径为1,如图当与直线相切时,LQ=,相应的圆心满足题意,其横坐标取到最小值作轴于点,则设直线与直线的交点为直线中,k=,点F与Q重合,则的半径为1,由可得,的取值范围是 (3)M(2,m),M点在直线x=2上,LQ取最大值时,=,作直线y=x,与x=2交于点N,当M与ON和x轴同时相切时,半径r最大,根据题意作图如下:M与O
21、N相切于Q,与x轴相切于E,把x=2代入y=x得:y=4,NE=4,OE=2,ON=6,MQN=NEO=90,又ONE=MNQ,即,解得:r=.最大半径为.【答案点睛】本题是一次函数和圆的综合题,主要考查了一次函数和圆的切线的性质,解答时要注意做好数形结合,根据图形进行分类讨论19、 ;5【答案解析】原式=(-)=a=2,原式=520、 (1) 该车间应安排4天加工童装,6天加工成人装;(2) 36000元【答案解析】(1)利用某车间计划用10天加工一批出口童装和成人装共360件,分别得出方程组成方程组求出即可;(2)利用(1)中所求,分别得出两种服装获利即可得出答案【题目详解】解:(1)设该
22、车间应安排x天加工童装,y天加工成人装,由题意得:,解得:,答:该车间应安排4天加工童装,6天加工成人装;(2)454=180,306=180,18080+180120=180(80+120)=36000(元),答:该车间加工完这批服装后,共可获利36000元【答案点睛】本题考查二元一次方程组的应用21、塔CD的高度为37.9米【答案解析】测试卷分析:首先分析图形,根据题意构造直角三角形本题涉及两个直角三角形,即RtBED和RtDAC,利用已知角的正切分别计算,可得到一个关于AC的方程,从而求出DC测试卷解析:作BECD于E可得RtBED和矩形ACEB则有CE=AB=16,AC=BE在RtBE
23、D中,DBE=45,DE=BE=AC在RtDAC中,DAC=60,DC=ACtan60=AC16+DE=DC,16+AC=AC,解得:AC=8+8=DE所以塔CD的高度为(8+24)米37.9米,答:塔CD的高度为37.9米22、(1)证明见解析(2)【答案解析】(1)连接OD,根据三角形的中位线定理可求出ODAC,根据切线的性质可证明DEOD,进而得证(2)连接AD,根据等腰三角形的性质及三角函数的定义用OB表示出OF、CF的长,根据三角函数的定义求解【题目详解】解:(1)连接OD . DE是O的切线,DEOD,即ODE=90 . AB是O的直径, O是AB的中点.又D是BC的中点, .ODAC . DEC=ODE= 90 .DEAC . (2)连接AD . ODAC,.AB为O的直径, ADB= ADC =90 .又D为BC的中点,AB=AC. sinABC=, 设AD= 3x , 则AB=AC=4x, OD= 2x.DEAC, ADC= AED= 90.DAC= EAD, ADCAED. .23、(1)落回到圈A的概率P1【答案解析】(1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《Q690高强钢焊接截面热-结构耦合分析及纵向残余应力分布模型研究》
- 2024年城市综合体土地租赁合作框架合同范本3篇
- 校园演讲稿模板汇编九篇资料
- 排水管道选购合同
- 混凝土分项工程外包合同
- 人才猎聘服务合同示范
- 设备保养维修服务合同
- 瓷砖供货商合同
- 婚庆服务合同详尽汇编
- 简化房屋交易协议
- 文旅深度融合长期发展规划
- ASTM-D3359-(附著力测试标准)-中文版
- 5 协商决定班级事务 (教学设计)-2024-2025学年道德与法治五年级上册统编版
- 2024年清洁机器人项目合作计划书
- 高校实验室安全通识课学习通超星期末考试答案章节答案2024年
- 银行客户经理招聘面试题与参考回答(某大型集团公司)
- 残疾人体育活动推广与普及考核试卷
- 《安全系统工程》期末考试卷及答案
- 空气动力学仿真技术:计算流体力学(CFD):CFD在飞机设计中的应用
- 2024新教材高中政治 第一单元 生产资料所有制与经济体制 第一课 我国的生产资料所有制 1.1《公有制为主体 多种所有制经济共同发展》教案 部编版必修2
- 职业学院食品药品监督管理专业核心课《企业管理》课程标准
评论
0/150
提交评论