统计学原理计算题_第1页
统计学原理计算题_第2页
统计学原理计算题_第3页
统计学原理计算题_第4页
统计学原理计算题_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、时间序列:1某公司某年9月底有员工250人,10月上旬的人数改动状况是:10月4日新招聘12名大学生上岗,6日有4名老员工退休离岗,8日有3名青年工人应征参军,同日又有3名员工离职离岗,9日招聘7名营销人员上岗。试计算该公司10月上旬的均匀在岗人数。解:1aaf25032622258225212592256f322122某银行2001年部分月份的现金库存额资料以下:日期1月1日2月1日3月1日4月1日5月1日6月1日7月1日库存额(万500480450520550600580元)要求:(1)详细说明这个时间序列属于哪一种时间序列。(2)分别计算该银行2001年第一季度、第二季度和上半年的均

2、匀现金库存额。解:2(1)这是个等间隔的时点序列a0a1a2a3an1an(2)a22n第一季度的均匀现金库存额:500480450520a232480(万元)第二季度的均匀现金库存额:500550600580a22566.67(万元)3上半年的均匀现金库存额:500480550600580480566.67a226523.33,或523.332答:该银行2001年第一季度均匀现金库存额为480万元,第二季度均匀现金库存额为566.67万元,上半年的均匀现金库存额为523.33万元.3某单位上半年员工人数统计资料以下:时间1月1日2月1日4月1日6月30日人数(人)10021050102010

3、08要求计算:第一季度均匀人数;上半年均匀人数。解:第一季度均匀人数:1002105011050210202a2121032(人)上半年均匀人数:1002105011050210202102010083a2123210234某公司2001年上半年的产量和单位成本资料以下:月份123456产量(件)200030004000300040005000单位成本(元)737271736968试计算该公司2001年上半年的产品均匀单位成本。解:解:产品总产量a200030004000300040005000021000(件)产品总成本b14.621.628.421.927.634.0148.1(万元)总成

4、本b万元均匀单位成本c总产量148.1件70.52(元/件)a21000148.110000或:均匀单位成本cb670.52(万元)a210006答:该公司2001年上半年的产品均匀单位成本为7052元件。5某地域19962000年公民生产总值数据以下:年份19971998199920002001公民生产总值(亿元)40968558发展速度环比()定基15134增添速度环比103()定基要求:(1)计算并填列表中所缺数字。(2)计算该地域19972001年间的均匀公民生产总值。(3)计算19982001年间公民生产总值的均匀发展速度和均匀增添速度。解:计算表以下:某地域1996-2000年公民

5、生产总值数据年份19961997199819992000公民生产总值(亿元)40945116855861.9发展速度环比定基110.3151.8484.67106.72(%)110.3167.48141.81151.34增添速度10.351.84-15.336.72(%)环比定基10.367.4841.8151.34(2)a40.945.1168.55861.9a554.88(万元)n均匀发展速度:an461.9an1.1091110.91%a040.9均匀增添速度=均匀发展速度-1=110911=1091答:该地域19962000年间的均匀每年创建公民生产总值5488亿元,19972000年

6、时期公民生产总值的均匀发展速度为11091,均匀增添速度为1091。6依据以下资料计算某地域第四时度在业人口数占劳动力资源人口的均匀比重。日期9月30日10月31日11月30日12月31日在业人口(万人)a劳动力资源人口(万280285280270680685684686人)b解:均匀在业人口数:a0a1a2a3an1an280285280270a2222280(万人)23均匀劳动力资源:b0b1b2b3bn1bn680685684686b2n22532684(万人)均匀在业人口比重:ca28040.94%b684答:该地域第四时度在业人口数占劳动力资源人口的均匀比重为4094。7某公司第四时

7、度总产值和劳动生产率资料以下:月份101112工业总产值(万元)a150168159.9劳动生产率(元)b750080007800要求:(1)计算该公司第四时度的月均匀劳动生产率。(2)计算该公司第四时度劳动生产率。解:均匀月产值a(1)月均匀劳动生产率b月均匀人数c(150168159.9)100003元/人)=(200210205)37770.73(季度产值a(2)季度劳动生产率b季均匀人数c(150168159.9)10000=210205)23312.20(元/人)(2003二、均匀数:NX1X2XNXi1、简单均值计算=Xi1NNKX1F1X2F2XNFNi1XiFi2、加权均值计算

8、=XF1F2FNKFii13、几何均匀计算=GMNX1X2XN4、调解均匀数(加权调解)=HMwiXiFiXiFiwiXiFiFiXiXiN5、几何均匀数=GMNX1X2XNNXii1三、统计指数:二、综合指数的计算(一)数目指标综合指数(拉氏)价钱假如固定在基期,称为拉氏公式:q1p0Kqq0p0价钱假如固定在报告期,称为派氏公式:Kqq1p1q0p1(二)质量指标综合指数(派氏)商品销售量,假如固定在基期,称为拉氏公式:Kpq0p1q0p0假如固定在报告期,称为派氏公式:Kpq1p1q1p0求商品销售额指数,并剖析销售额改动受销售量和销售价钱的影响分别是多少。1、销售额指数:p1q1492

9、00117.14%Kpqp0q042000报告期和基期对比,销售额上涨17.14%,增添的绝对数为:49200-42000=72002、受销量的影响为:Kqq1p048000114.29%q0p042000报告期和基期对比,销售上涨14.29%,增添的绝对数为:48000-42000=60003、受销售价钱的影响为Kpq1p149200q1p0102.5%48000报告期和基期对比,销售价钱上涨2.5%,增添的绝对数为:49200-48000=1200相对数:销售额指数=销售量指数销售价钱指数即117.14%=114.29%102.5%绝对数:7200=6000+1200(元)四、整体均值的区

10、间预计(已知)【例】某大学从该校学生中随机抽取100人,检查到他们均匀每日参加体育锻炼的时间为26分钟。试以95的置信水平预计该大学全体学生均匀每日参加体育锻炼的时间(已知整体方差为36小时)。解:已知x26,=6,n=100,1-=0.95,/2=1.96xZ2n,xZ2n261.966,261.96610010024.824,27.176我们能够95的概率保证均匀每日参加锻炼的时间在24.82427.176分钟之间五、整体均值的区间预计(未知)【例】从一个正态整体中抽取一个随机样本,n=25,其均值x=50,标准差s=8。建立整体均值m的95%的置信区间。解:已知N(,2),x=50,s=

11、8,n=25,1-=0.95,t/2=2.0639。xt2sn1,xt2sn1nn502.06398,502.06398252546.69,53.3我们能够95的概率保证整体均值在46.6953.30之间六、样本容量确实定【例】一家广告公想预计某类商铺昨年所花的均匀广告花费有多少。为1800000元。如置信度取95%,并要使预计处在整体均匀值邻近广告公司应抽多大的样本?解:已知2=1800000,=0.05,Z/2=1.96,=500经验表示,整体方差约500元的范围内,这家应抽取的样本容量为Z222n2(1.96)2(1800000)500227.6528整体均值的查验(大样本)七、整体均值

12、的查验(2已知)(两侧查验)【例】一种罐装饮料采纳自动生产线生产,每罐的容量是255ml,标准差为5ml。为查验每罐容量能否切合要求,质检人员在某天生产的饮猜中随机抽取了40罐进行查验,测得每罐均匀容量为255.8ml。取明显性水平=0.05,查验该天生产的饮料容量能否切合标准要求??H0?H1:=2552550.05n=40临界值(c):查验统计量:决议:不拒绝H0结论:样本供给的凭证还不足以颠覆“该天生产的饮料切合标准要求”的见解(左边查验)【例】一种机床加工的部件尺寸绝对均匀偏差为1.35mm。生产厂家现采纳一种新的机床进行加工以期进一步降低偏差。为查验新机床加工的部件均匀偏差与旧机床对

13、比能否有明显降低,从某天生产的部件中随机抽取50个进行查验。利用这些样本数据,查验新机床加工的部件尺寸的均匀偏差与旧机床对比能否有明显降低?(=0.01)解:八、整体均值的查验(2未知)(右边查验)【例】某一小麦品种的均匀产量为5200kg/hm2。一家研究机构对小麦品种进行了改进以期提升产量。为查验改进后的新品种产量能否有明显提升,随机抽取了36个地块进行试种,获得的样本均匀产量为5275kg/hm2,标准差为120/hm2。试查验改进后的新品种产量能否有明显提升?(=0.05)解:九、整体均值的查验(小样本)【例】一种汽车配件的均匀长度要求为12cm,高于或低于该标准均被以为是不合格的。汽车生产公司在购进配件时,往常是经过招标,而后对中标的配件供给商供给的样品进行查验,以决定能否购进。现对一个配件供给商供给的10个样本进行了查验。假设该供货商生产的配件长度听从正态散布,在0.05的明显性水平下,查验该供货商供给的配件能否切合要求?解:十、预计方程的求法【例】求不良贷款对贷款余额的回归方程?2517080.143006.793.20.037895125516543.3723006.7?3.7280.037895120.2680.82950回归方程为:y=-0.8295+0.037895x回归系数=0.037895表示,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论