2021-2022学年甘肃省白银市靖远第一中学数学高二下期末预测试题含解析_第1页
2021-2022学年甘肃省白银市靖远第一中学数学高二下期末预测试题含解析_第2页
2021-2022学年甘肃省白银市靖远第一中学数学高二下期末预测试题含解析_第3页
2021-2022学年甘肃省白银市靖远第一中学数学高二下期末预测试题含解析_第4页
2021-2022学年甘肃省白银市靖远第一中学数学高二下期末预测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,设函数若关于的不等式在上恒成立,则的取值范围为( )ABCD2设是虚数单位,则的值为(

2、 )ABCD3若,则等于( )ABCD4设双曲线:的左、右焦点分别为、,点在上,且满足.若满足条件的点只在的左支上,则的离心率的取值范围是( )ABCD5若关于的不等式恒成立,则实数的取值范围( )ABCD6设:实数,满足,且;:实数,满足;则是的A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件7,三个人站成一排照相,则不站在两头的概率为( )ABCD8已知等差数列an的前n项和为Sn,若a5+a7+a921,则S13( )A36B72C91D1829在直角坐标系中,一个质点从出发沿图中路线依次经过,按此规律一直运动下去,则( )A1006B1007C1008D100910若的

3、展开式中各项的二项式系数之和为512,且第6项的系数最大,则a的取值范围为( )ABCD11是单调函数,对任意都有,则的值为( )ABCD12己知点A是抛物线的对称轴与准线的交点,点B为抛物线的焦点,P在抛物线上且满足,当取最大值时,点P恰好在以A、B为焦点的双曲线上,则双曲线的离心率为ABCD二、填空题:本题共4小题,每小题5分,共20分。13是虚数单位,若复数是纯虚数,则实数_.14已知定点和曲线上的动点,则线段的中点的轨迹方程为_15某地环保部门召集6家企业的负责人座谈,其中甲企业有2人到会,其余5家企业各有1人到会,会上有3人发言,则发言的3人来自3家不同企业的可能情况的总数为_16在

4、极坐标系中,直线被圆4截得的弦长为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知等差数列满足:,.(1)求数列的通项公式;(2)求数列的前项和.18(12分)设不等式表示的平面区别为区域内的动点到直线和直线的距离之积为1记点的轨迹为曲线过点的直线与曲线交于、两点(1)求曲线的方程;(1)若垂直于轴,为曲线上一点,求的取值范围;(3)若以线段为直径的圆与轴相切,求直线的斜率19(12分)已知的展开式中第五项的系数与第三项的系数之比是.求:(1)展开式中各项系数的和;(2)展开式中系数最大的项.20(12分)假设某种人寿保险规定,投保人没活过65岁,保险公司要赔

5、偿10万元;若投保人活过65岁,则保险公司不赔偿,但要给投保人一次性支付4万元已知购买此种人寿保险的每个投保人能活过65岁的概率都为,随机抽取4个投保人,设其中活过65岁的人数为,保险公司支出给这4人的总金额为万元(参考数据:)(1)指出X服从的分布并写出与的关系;(2)求.(结果保留3位小数)21(12分)数列满足,等比数列满足.(1)求数列的通项公式;(2)设,求数列的前项和.22(10分)已知的展开式中前三项的系数成等差数列. (1)求展开式的二项式系数的和;(2)求展开式中含的项.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求

6、的。1、C【解析】先判断时,在上恒成立;若在上恒成立,转化为在上恒成立【详解】,即,(1)当时,当时,故当时,在上恒成立;若在上恒成立,即在上恒成立,令,则,当函数单增,当函数单减,故,所以当时,在上恒成立;综上可知,的取值范围是,故选C【点睛】本题考查分段函数的最值问题,关键利用求导的方法研究函数的单调性,进行综合分析2、B【解析】利用错位相减法、等比数列的求和公式及复数的周期性进行计算可得答案.【详解】解:设,可得:,则,可得:,可得:,故选:B.【点睛】本题主要考查等比数列的求和公式,错位相减法、及复数的乘除法运算,属于中档题.3、D【解析】中最大的数为,包含个数据,且个数据是连续的正整

7、数,由此可得到的表示.【详解】因为,所以表示从连乘到,一共是个正整数连乘,所以.故选:D.【点睛】本题考查排列数的表示,难度较易.注意公式:的运用.4、C【解析】本题需要分类讨论,首先需要讨论“在双曲线的右支上”这种情况,然后讨论“在双曲线的左支上”这种情况,然后根据题意,即可得出结果。【详解】若在双曲线的右支上,根据双曲线的相关性质可知,此时的最小值为,因为满足题意的点在双曲线的左支,所以,即,所以,若在双曲线的左支上,根据双曲线的相关性质可知,此时的最小值为,想要满足题意的点在双曲线的左支上,则需要满足,即,所以由得,故选C。【点睛】本题考查了圆锥曲线的相关性质,主要考查了圆锥曲线中双曲线

8、的相关性质,考查双曲线的离心率的取值范围,考查双曲线的长轴、短轴以及焦距之间的关系,考查推理能力,是中档题。5、B【解析】恒成立等价于恒成立,令,则问题转化为,对函数求导,利用导函数求其最大值,进而得到答案 。【详解】恒成立等价于恒成立,令,则问题转化为,令,则,所以当时,所以在单调递减且,所以在上单调递增,在上的单调递减,当时,函数取得最大值,所以 故选B【点睛】本题考查利用导函数解答恒成立问题,解题的关键是构造函数,属于一般题。6、A【解析】利用充分必要性定义及不等式性质即可得到结果.【详解】当,且时,显然成立,故充分性具备;反之不然,比如:a=100,b=0.5满足,但推不出,且,故必要

9、性不具备,所以是的充分不必要条件.故选A【点睛】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题7、B【解析】分析:,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,从而即可得到答案.详解:,三个人站成一排照相,总的基本事件为种,不站在两头,即站中间,则有种情况,则不站在两头的概率为.故选:B.点睛:本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.8、C【解析】根据等差数列的性质求出,根据等差数列的前项和公式可得.【详解】因为an为等差数列,所以,所以,所以.故选C.【点睛】本题考查了等差数列的性质、等差

10、数列的前项和.属于基础题.9、D【解析】分析:由题意得,即,观察前八项,得到数列的规律,求出即可.详解:由直角坐标系可知,即,由此可知,数列中偶数项是从1开始逐渐递增的,且都等于所在的项数除以2,则,每四个数中有一个负数,且为每组的第三个数,每组的第一个数为其组数,每组的第一个数和第三个数是互为相反数,因为,则,故选D.点睛:本题考查了归纳推理的问题,关键是找到规律,属于难题. 归纳推理的一般步骤: 一、通过观察个别情况发现某些相同的性质. 二、从已知的相同性质中推出一个明确表述的一般性命题(猜想). 常见的归纳推理分为数的归纳和形的归纳两类:(1) 数的归纳包括数的归纳和式子的归纳,解决此类

11、问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2) 形的归纳主要包括图形数目的归纳和图形变化规律的归纳.10、C【解析】计算,计算,根据系数的大小关系得到,解得答案.【详解】,第6项的系数最大,则.故选:.【点睛】本题考查了二项式定理,意在考查学生的计算能力和应用能力.11、A【解析】令,根据对任意都有,对其求导,结合是单调函数,即可求得的解析式,从而可得答案.【详解】令,则,.是单调函数,即.故选A.【点睛】本题考查的知识点是函数的值,函数解析式的求法,其中解答的关键是求出抽象函数解析式,要注意对已知条件及未知条件的凑配思想的应用12

12、、B【解析】根据题目可知,过作准线的垂线,垂足为,则由抛物线的定义,结合,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,即可求出的的坐标,再利用双曲线的定义,即可求得双曲线得离心率。【详解】由题意知,由对称性不妨设P点在y轴的右侧,过作准线的垂线,垂足为,则根据则抛物线的定义,可得,设的倾斜角为,当取得最大值时,最小,此时直线与抛物线相切,设直线的方程为,与联立,得,令,解得可得,又此时点P恰好在以A、B为焦点的双曲线上双曲线的实轴故答案选B。【点睛】本题主要考查了双曲线与抛物线的性质的应用,在解决圆锥曲线相关问题时常用到方程思想以及数形结合思想。二、填空题:本题共4小题,每

13、小题5分,共20分。13、2【解析】化简复数,实部为0,计算得到答案.【详解】为纯虚数 故答案为2【点睛】本题考查了复数的计算,属于简单题.14、【解析】通过中点坐标公式,把点的坐标转移到上,把点的坐标代入曲线方程,整理可得点的轨迹方程。【详解】设点的坐标为,点,因为点是线段的中点,所以解得,把点的坐标代入曲线方程可得,整理得,所以点的轨迹方程为故答案为:【点睛】本题考查中点坐标公式,相关点法求轨迹方程的方法,属于中档题。15、30种【解析】对发言的3人进行讨论,一类是3个中有来自甲企业,一类是3人中没有来自甲企业.【详解】(1)当发言的3人有来自甲企业,则共有:;(2)当发言的3人没有来自甲

14、企业,则共有:;所以可能情况的总数为种.【点睛】本题考查分类与分步计数原理,解题的关键在于对3个发言人来自企业的讨论,即有来自甲和没有来自甲.16、【解析】将直线及圆分别化成直角坐标方程:,利用点到直线距离求出圆心到直线的距离为1长等于三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由等差中项解得,依题意解得,根据即可求得通项公式(2)根据找到正负转折项,分类讨论求得结果【详解】(1)因为,所以,得.设的公差为,因为,即,所以,.(2)由(1)可知,则,当时,;当时,.综上所述,【点睛】本题考察等差数列通项公式与绝对值求和18、(1);(1);

15、(3)【解析】(1)根据“区域内的动点到直线和直线的距离之积为”列方程,化简后求得曲线的方程.(1)求得两点的坐标,利用平面向量数量积的坐标运算化简,由此求得的取值范围.(3)设出直线的方程,联立直线的方程和曲线,写出韦达定理.求得以为直径的圆的圆心和直径,根据圆与轴相切列方程,解方程求得直线的斜率.【详解】(1)设,依题意,因为满足不等式,所以可化为.(1)将代入曲线的方程,解得.取,设,因为为曲线上一点,故.则.即的取值范围是.(3)设直线的方程是,.联立,消去得,所以.设线段的中点为,则,所以.因为以线段为直径的圆与轴相切,所以,即,化简得.所以直线的斜率为.【点睛】本小题主要考查双曲线

16、标准方程及其性质,考查一元二次方程根与系数关系,考查中点坐标公式、点到直线距离公式,考查运算求解能力,属于难题.19、(1);(2)和.【解析】分析:(1)由条件求得,令,可得展开式的各项系数的和(2)设展开式中的第项、第项、第项的系数分别为,.若第项的系数最大,则,解不等式即可.详解:展开式的通项为. 依题意,得. (1)令,则各项系数的和为. (2)设展开式中的第项、第项、第项的系数分别为,.若第项的系数最大,则 , 得. 于是系数最大的项是和.点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题20、 (1) ; ;(2) 【解析】(1)先由题意可得,服

17、从二项分布;再由题意得到,化简即可得出结果;(2)先由,根据(1)的结果,得到,进而可得,即可求出结果.【详解】(1)由题意得,服从二项分布,即,因为4个投保人中,活过65岁的人数为,则没活过65岁的人数为,因此,即.(2)由得,所以,所以 = .所以约为.【点睛】本题主要考查二项分布的问题,熟记二项分布的概率计算公式即可,属于常考题型.21、(1),;(2).【解析】分析:(1)由已知可得数列为等差数列,根据等差数列的通项公式求得;再求出和,进而求出公比,代入等比数列的通项公式,即可求得数列的通项公式; (2)利用错位相减法即可求出数列的前项和.详解:解:(1),所以数列为等差数列,则;,所以,则.(2),则两式相减得整理得.点睛:本题主要考查等差数列、等比数列的定义与通项公式,考查错位相减法求数列前项和,考查学生运算求解能力.错位相减法是必须掌握的求和方法之一:若,其中是公差为d的等差数列,是公比为的等比数列.具体运算步骤如下:1、写出新数列的和.(1)2、等式左右同时乘以等比数列部分的公比.(2)3、两式相减.(1)-(2)整理得:注意:首项系数为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论