




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高二下数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题
2、目要求的。1若曲线yx32x2+2在点A处的切线方程为y4x6,且点A在直线mx+ny20(其中m0,n0)上,则()Am+7n10Bm+n10Cm+13n30Dm+n10或m+13n302中国南北朝时期的著作孙子算经中,对同余除法有较深的研究.设为整数,若a和b被m除得余数相同,则称a和b对模m同余.记为.若,则b的值可以是( )A2019B2020C2021D20223设,则( )AabcBbacCcabDc1时,对数函数才是增函数,故答案为:A【点睛】(1)本题主要考查三段论,意在考查学生对该知识的掌握水平和分析推理能力.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才
3、是正确的.11、A【解析】由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率故选A点睛:双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出a,c,代入公式;只需要根据一个条件得到关于a,b,c的齐次式,结合b2c2a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)12、C【解析】根据反证法的要求,反设时条件不变,结论设为相反,从而得到答案.【详解】命题“若,则”,要用反证法证明,则其反设需满足条件不变,结论
4、设为相反,所以正确的反设为,故选C项.【点睛】本题考查利用反证法证明时,反设应如何写,属于简单题.二、填空题:本题共4小题,每小题5分,共20分。13、136【解析】分析:分两种情况:取出的4个小球中有1个是1 号白色小球;取出的4个小球中没有1 号白色小球.详解:由题,黑色小球和白色小球共10个,分两种情况:取出的4个小球中有1个是1 号白色小球的选法有种;取出的4个小球中没有1 号白色小球,则必有1号黑色小球,则满足题意的选法有种,则满足题意的选法共有种.即答案为136.点睛:本题考查分步计数原理、分类计数原理的应用,注意要求取出的“4个小球中既有1号球又有白色小球”14、3413【解析】
5、可以根据服从正态分布,可以知道,根据,可以求出,再根据对称性可以求出,最后可以估计出质量在区间内的产品的数量.【详解】解:,质量在区间内的产品估计有件.【点睛】本题考查了正态分布,正确熟悉掌握正态分布的特点以及原则是解题的关键.15、【解析】由题意可知,奇数项的二项式系数之和为,求出,然后求出展开式的通项,利用的指数为,求出参数的值,然后将参数的值代入通项,即可求出含项的系数.【详解】由题意可知,奇数项的二项式系数之和为,解得,展开式的通项为,令,得,因此,展开式中含的系数为.故答案为.【点睛】本题考查二项展开式中奇数项系数和的问题,同时也考查了二项展开式中指定项系数的求解,一般利用展开式通项
6、来进行计算,考查运算求解能力,属于中等题.16、1【解析】由题意首先确定圆心坐标,然后利用点到直线距离公式可得圆心到直线的距离.【详解】圆的方程即:,则圆心坐标为,圆心到直线的距离.故答案为:1【点睛】本题主要考查由圆的方程确定圆心的方法,点到直线距离公式的应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、在犯错误的概率不超过0.005的前提下,认为药物处理跟发生青花病是有关系的【解析】先完成列联表,计算的观测值,对照表格数据即可得结论【详解】由已知条件得列联表如下:药物处理未经药物处理合计青花病25185210无青花病602
7、00260合计85385470提出假设:经过药物处理跟发生青花病无关系根据列联表中的数据,可以求得的观测值.因为当成立时,的概率约为0.005,而此时,所以在犯错误的概率不超过0.005的前提下,认为药物处理跟发生青花病是有关系的【点睛】本题考查独立性检验,考查计算能力,是基础题18、(1)(2)【解析】(1)ab,ab0.而a(3sin,cos),b(2sin,5sin4cos),故ab6sin25sincos4cos20,即0.由于cos0,6tan25tan40.解得tan或tan.,tan0,tan.(2),.由tan,求得tan或tan2(舍去)sin,cos,coscoscossi
8、nsin19、 (1)k=1;(2)的单调递减区间为,单调递增区间为,最小值为;(3) .【解析】(1)首先求得导函数,然后利用导函数研究函数切线的性质得到关于k的方程,解方程即可求得k的值;(2)首先确定函数的定义域,然后结合导函数的符号与原函数的单调性求解函数的单调区间和函数的最值即可;(3)用问题等价于,据此求解实数a的取值范围即可.【详解】(1),因为曲线在点处的切线与轴平行,所以,所以.(2),定义域为,令,得,当变化时,和的变化如下表:由上表可知,的单调递减区间为,单调递增区间为,最小值为.(3)若对任意成立,则,即,解得:.【点睛】导数是研究函数的单调性、极值(最值)最有效的工具
9、,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度 从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系 (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数 (3)利用导数求函数的最值(极值),解决生活中的优化问题 (4)考查数形结合思想的应用20、(1),;(2)【解析】分析:(1)由题意,当时,当时,化简得,得数列是首项为1,公比为2等比数列,即可求解,进而得到;(2)由(1)可得,利用乘公比错位相减法,即可求解数列的和详解:(1)当时, 当时, 相减得
10、 数列是首项为1,公比为2等比数列3分 4分 6分(2)7分 8分相减得12分点睛:本题主要考查等差、等比数列的通项公式、数列求和的“错位相减法”,此类题目是数列问题中的常见题型,对考生计算能力要求较高,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题将数列与解析几何结合起来,适当增大了难度,能较好的考查考生的数形结合思想、逻辑思维能力及基本计算能力等.21、(1)见解析(2). 【解析】试题分析:(1)延长交于点,由重心性质及中位线性质可得,再结合圆的性质得,由已知,可证 平面,进一步可得平面平面(2)以点为原点,方向分别为,轴正方向建立空
11、间直角坐标系,写出各点坐标,利用二面角与二个半平面的法向量的夹角间的关系可求二面角的余弦值试题解析:(1)如图,延长交于点.因为为的重心,所以为的中点.因为为的中点,所以.因为是圆的直径,所以,所以.因为平面,平面,所以.又平面,平面=,所以 平面.即平面,又平面,所以平面 平面.(2)以点为原点,方向分别为,轴正方向建立空间直角坐标系,则,则,.平面即为平面,设平面的一个法向量为,则令,得.过点作于点,由平面,易得,又,所以平面,即为平面的一个法向量.在中,由,得,则,.所以,.所以.设二面角的大小为,则 .点睛:若分别二面角的两个半平面的法向量,则二面角的大小满足,二面角的平面角的大小是的夹角(或其补角,需根据观察得出结论)在利用向量求空间角时,建立合理的空间直角坐标系,正确写出各点坐标,求出平面的法向量是解题的关键22、(1)直线l的普通方程为;圆C的直角坐标方程为;(2).【解析】(1)由直线的参数方程消去参数可直接得到普通方程;由极坐标与直角坐标的互化公式,可直接得到圆的直角坐标方程;(2)将直线参数方程代入圆的直角坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 冰墩墩课件介绍
- 宣传委员竞选教学课件
- 冬季保健知识课件
- 宣传主题班会课件
- 冠心病防治科普知识
- 2025版拆墙工程施工许可证协议书合同范本
- 2025版工业园区包干制物业管理服务协议
- 二零二五年搬运工工伤免责保障合同模板
- 宝玉石加工技术课件
- 二零二五年度KTV智能灯光音响系统升级改造合同
- 广东教育学院德育研究中心
- 2025至2030中国清洁机器人市场经营效益与投融资发展状况报告
- 产品标品牌管理制度
- 高压气体绝缘设备中SF6分解产物检测SO2传感器的设计与应用
- 烟台万华并购匈牙利博苏化学公司研究报告
- DBJ04-T494-2025 《坡地建筑设计防火标准》
- ecmo考试试题及答案
- GB/T 21711.3-2025基础机电继电器第3部分:强制定位(机械联锁)触点继电器
- 中医疼痛课件
- 农发银行笔试题库及答案
- 2025年军队文职统一考试《专业科目》数学1试卷真题答案解析
评论
0/150
提交评论