版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知平面向量满足与的夹角为,且,则实数的值为( )ABCD2高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过的最大整数,
2、则称为高斯函数,例如:,已知函数(),则函数的值域为( )ABCD3设等比数列的前项和为,若,则的值为( )ABCD4要得到函数的图象,只需将函数图象上所有点的横坐标( )A伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度5在三棱锥中,且分别是棱,的中点,下面四个结论:;平面;三棱锥的体积的最大值为;与一定不垂直.其中所有正确命题的序号是( )ABCD6已知点P不在直线l、m上,则“过点
3、P可以作无数个平面,使得直线l、m都与这些平面平行”是“直线l、m互相平行”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件7已知定义在上的偶函数,当时,设,则( )ABCD8在中,角的对边分别为,若,则的形状为( )A直角三角形B等腰非等边三角形C等腰或直角三角形D钝角三角形9已知函数,若对任意,都有成立,则实数的取值范围是( )ABCD10已知向量与的夹角为,定义为与的“向量积”,且是一个向量,它的长度,若,则( )ABC6D11已知双曲线的左、右焦点分别为,圆与双曲线在第一象限内的交点为M,若则该双曲线的离心率为A2B3CD12已知底面为正方形的四棱锥,其一条
4、侧棱垂直于底面,那么该四棱锥的三视图可能是下列各图中的( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知正四棱柱的底面边长为,侧面的对角线长是,则这个正四棱柱的体积是_14正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是_.15在回归分析的问题中,我们可以通过对数变换把非线性回归方程,()转化为线性回归方程,即两边取对数,令,得到.受其启发,可求得函数()的值域是_.16已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.三、解答题:共70分。解答应写出文字说明、证明
5、过程或演算步骤。17(12分)某调查机构对某校学生做了一个是否同意生“二孩”抽样调查,该调查机构从该校随机抽查了100名不同性别的学生,调查统计他们是同意父母生“二孩”还是反对父母生“二孩”,现已得知100人中同意父母生“二孩”占60%,统计情况如下表:同意不同意合计男生a5女生40d合计100(1)求 a,d 的值,根据以上数据,能否有97.5%的把握认为是否同意父母生“二孩”与性别有关?请说明理由;(2)将上述调查所得的频率视为概率,现在从所有学生中,采用随机抽样的方法抽取4 位学生进行长期跟踪调查,记被抽取的4位学生中持“同意”态度的人数为 X,求 X 的分布列及数学期望.附:0.150
6、.1000.0500.0250.0102.0722.7063.8415.0246.63518(12分)在以ABCDEF为顶点的五面体中,底面ABCD为菱形,ABC120,ABAEED2EF,EFAB,点G为CD中点,平面EAD平面ABCD.(1)证明:BDEG;(2)若三棱锥,求菱形ABCD的边长.19(12分)某芯片公司对今年新开发的一批5G手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为五个小组(所调查的芯片得分均在内),得到如图所示的频率分布直方图,其中(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替)(2)芯片公司另选100颗芯片交
7、付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。若3个工程手机的评分都达到11万分,则认定该芯片合格;若3个工程手机中只要有2个评分没达到11万分,则认定该芯片不合格;若3个工程手机中仅1个评分没有达到11万分,则将该芯片再分别置于另外2个工程手机中进行二测,二测时,2个工程手机的评分都达到11万分,则认定该芯片合格;2个工程手机中只要有1个评分没达到11万分,手机公司将认定该芯片不合格已知每颗芯片在各次置于工程手机中的得分相互独立,并且芯片公司对芯片的评分方法及标准与手机公司对芯片的评分方法及标准都一致(以频率作为概率)每颗芯片置于一个工程手机中的测试费用均为30
8、0元,每颗芯片若被认定为合格或不合格,将不再进行后续测试,现手机公司测试部门预算的测试经费为10万元,试问预算经费是否足够测试完这100颗芯片?请说明理由20(12分)对于正整数,如果个整数满足,且,则称数组为的一个“正整数分拆”.记均为偶数的“正整数分拆”的个数为均为奇数的“正整数分拆”的个数为.()写出整数4的所有“正整数分拆”;()对于给定的整数,设是的一个“正整数分拆”,且,求的最大值;()对所有的正整数,证明:;并求出使得等号成立的的值.(注:对于的两个“正整数分拆”与,当且仅当且时,称这两个“正整数分拆”是相同的.)21(12分)某调查机构为了了解某产品年产量x(吨)对价格y(千克
9、/吨)和利润z的影响,对近五年该产品的年产量和价格统计如下表:x12345y17.016.515.513.812.2(1)求y关于x的线性回归方程;(2)若每吨该产品的成本为12千元,假设该产品可全部卖出,预测当年产量为多少时,年利润w取到最大值?参考公式: 22(10分)已知函数.(1)解不等式;(2)若,求证:.2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【答案解析】由已知可得,结合向量数量积的运算律,建立方程,求解即可.【题目详解】依题意得由,得即,解得.故选:.【答案点睛】本题考
10、查向量的数量积运算,向量垂直的应用,考查计算求解能力,属于基础题.2、B【答案解析】利用换元法化简解析式为二次函数的形式,根据二次函数的性质求得的取值范围,由此求得的值域.【题目详解】因为(),所以,令(),则(),函数的对称轴方程为,所以,所以,所以的值域为.故选:B【答案点睛】本小题考查函数的定义域与值域等基础知识,考查学生分析问题,解决问题的能力,运算求解能力,转化与化归思想,换元思想,分类讨论和应用意识.3、C【答案解析】求得等比数列的公比,然后利用等比数列的求和公式可求得的值.【题目详解】设等比数列的公比为,因此,.故选:C.【答案点睛】本题考查等比数列求和公式的应用,解答的关键就是
11、求出等比数列的公比,考查计算能力,属于基础题.4、B【答案解析】分析:根据三角函数的图象关系进行判断即可详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到 再将得到的图象向左平移个单位长度得到 故选B点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键5、D【答案解析】通过证明平面,证得;通过证明,证得平面;求得三棱锥体积的最大值,由此判断的正确性;利用反证法证得与一定不垂直.【题目详解】设的中点为,连接,则,又,所以平面,所以,故正确;因为,所以平面,故正确;当平面与平面垂直时,最大,最大值为,故错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为
12、,所以显然与不可能垂直,故正确.故选:D【答案点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.6、C【答案解析】根据直线和平面平行的性质,结合充分条件和必要条件的定义进行判断即可【题目详解】点不在直线、上,若直线、互相平行,则过点可以作无数个平面,使得直线、都与这些平面平行,即必要性成立,若过点可以作无数个平面,使得直线、都与这些平面平行,则直线、互相平行成立,反证法证明如下:若直线、互相不平行,则,异面或相交,则过点只能作一个平面同时和两条直线平行,则与条件矛盾,即充分性成立则“过点可以作无数个平面,使得直线、都与这些平
13、面平行”是“直线、互相平行”的充要条件,故选:【答案点睛】本题主要考查充分条件和必要条件的判断,结合空间直线和平面平行的性质是解决本题的关键7、B【答案解析】根据偶函数性质,可判断关系;由时,求得导函数,并构造函数,由进而判断函数在时的单调性,即可比较大小.【题目详解】为定义在上的偶函数,所以所以;当时,则,令则,当时,则在时单调递增,因为,所以,即,则在时单调递增,而,所以,综上可知,即,故选:B.【答案点睛】本题考查了偶函数的性质应用,由导函数性质判断函数单调性的应用,根据单调性比较大小,属于中档题.8、C【答案解析】利用正弦定理将边化角,再由,化简可得,最后分类讨论可得;【题目详解】解:
14、因为所以所以所以所以所以当时,为直角三角形;当时即,为等腰三角形;的形状是等腰三角形或直角三角形故选:【答案点睛】本题考查三角形形状的判断,考查正弦定理的运用,考查学生分析解决问题的能力,属于基础题9、D【答案解析】先将所求问题转化为对任意恒成立,即得图象恒在函数图象的上方,再利用数形结合即可解决.【题目详解】由得,由题意函数得图象恒在函数图象的上方,作出函数的图象如图所示过原点作函数的切线,设切点为,则,解得,所以切线斜率为,所以,解得.故选:D.【答案点睛】本题考查导数在不等式恒成立中的应用,考查了学生转化与化归思想以及数形结合的思想,是一道中档题.10、D【答案解析】先根据向量坐标运算求
15、出和,进而求出,代入题中给的定义即可求解.【题目详解】由题意,则,得,由定义知,故选:D.【答案点睛】此题考查向量的坐标运算,引入新定义,属于简单题目.11、D【答案解析】本题首先可以通过题意画出图像并过点作垂线交于点,然后通过圆与双曲线的相关性质判断出三角形的形状并求出高的长度,的长度即点纵坐标,然后将点纵坐标带入圆的方程即可得出点坐标,最后将点坐标带入双曲线方程即可得出结果。【题目详解】根据题意可画出以上图像,过点作垂线并交于点,因为,在双曲线上,所以根据双曲线性质可知,即,因为圆的半径为,是圆的半径,所以,因为,所以,三角形是直角三角形,因为,所以,即点纵坐标为,将点纵坐标带入圆的方程中
16、可得,解得,将点坐标带入双曲线中可得,化简得,故选D。【答案点睛】本题考查了圆锥曲线的相关性质,主要考察了圆与双曲线的相关性质,考查了圆与双曲线的综合应用,考查了数形结合思想,体现了综合性,提高了学生的逻辑思维能力,是难题。12、C【答案解析】试题分析:通过对以下四个四棱锥的三视图对照可知,只有选项C是符合要求的.考点:三视图二、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】Aa设正四棱柱的高为h得到故得到正四棱柱的体积为故答案为54.14、【答案解析】设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解【题目详解】解:设正四面体的棱长为,则底面积为,底面外接圆的半径
17、为,高为正四面体的体积,圆柱的体积则故答案为:【答案点睛】本题主要考查多面体与旋转体体积的求法,考查计算能力,属于中档题15、【答案解析】转化()为,即得解.【题目详解】由题意:().故答案为:【答案点睛】本题考查类比法求函数的值域,考查了学生逻辑推理,转化划归,数学运算的能力,属于中档题.16、【答案解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【题目详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有
18、2解,即需,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【答案点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1), 有97.5%的把握认为是否同意父母生“二孩”与“性别”有关;(2)详见解析.【答案解析】(1)根据表格及同意父母生“二孩”占60%可
19、求出, ,根据公式计算结果即可确定有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题意可知X服从二项分布,利用公式计算概率及期望即可.【题目详解】(1)因为100人中同意父母生“二孩”占60%,所以,文(2)由列联表可得而所以有97.5%的把握认为是否同意父母生“二孩”与“性别”有关(2)由题知持“同意”态度的学生的频率为,即从学生中任意抽取到一名持“同意”态度的学生的概率为.由于总体容量很大,故X服从二项分布,即从而X的分布列为X01234X的数学期望为【答案点睛】本题主要考查了相关性检验、二项分布,属于中档题.18、(1)详见解析;(2).【答案解析】(1)取中点,连,可
20、得,结合平面EAD平面ABCD,可证平面ABCD,进而有,再由底面是菱形可得,可得,可证得平面,即可证明结论;(2)设底面边长为,由EFAB,AB2EF,求出体积,建立的方程,即可求出结论.【题目详解】(1)取中点,连,底面ABCD为菱形,平面EAD平面ABCD,平面平面平面,平面平面,底面ABCD为菱形,为中点,平面,平面平面,;(2)设菱形ABCD的边长为,则,所以菱形ABCD的边长为.【答案点睛】本题考查线线垂直的证明和椎体的体积,注意空间中垂直关系之间的相互转化,体积问题要熟练应用等体积方法,属于中档题.19、(1)(2)预算经费不够测试完这100颗芯片,理由见解析【答案解析】(1)先
21、求出,再利用频率分布直方图的平均数公式求这100颗芯片评测分数的平均数;(2)先求出每颗芯片的测试费用的数学期望,再比较得解.【题目详解】(1)依题意,故又因为所以,所求平均数为(万分)(2)由题意可知,手机公司抽取一颗芯片置于一个工程机中进行检测评分达到11万分的概率设每颗芯片的测试费用为X元,则X的可能取值为600,900,1200,1500,故每颗芯片的测试费用的数学期望为(元),因为,所以显然预算经费不够测试完这100颗芯片【答案点睛】本题主要考查频率分布直方图的平均数的计算,考查离散型随机变量的数学期望的计算,意在考查学生对这些知识的理解掌握水平.20、 () ,;() 为偶数时,为奇数时,;()证明见解析,【答案解析】()根据题意直接写出答案.()讨论当为偶数时,最大为,当为奇数时,最大为,得到答案.() 讨论当为奇数时,至少存在一个全为1的拆分,故,当为偶数时, 根据对应关系得到,再计算,得到答案.【题目详解】()整数4的所有“正整数分拆”为:,.()当为偶数时,时,最大为;当为奇数时,时,最大为;综上所述:为偶数,最大为,为奇数时,最大为.()当为奇数时,至少存在一个全为1的拆分,故;当为偶数时,设是每个数均为偶数的“正整数分拆”,则它
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度厂房装修与室内外防滑及防跌落工程协议2篇
- 2025年度物业公司物业接管合同含年度工作目标3篇
- 2025年度牛奶饮料品牌授权与区域代理合同2篇
- 2025版精油原料供应链金融合作协议3篇
- 2025年度智能交通建设项目总承包服务协议下载2篇
- 2025借调合同适用人群范围
- 二零二五年度企业培训合同2篇
- 2024户外露台舞台搭建与租赁合同
- 2024建筑公司与材料供应商之间的采购合同
- 2024年项目预备协议:双方合作框架3篇
- 宝宝大便观察及护理课件
- 学校最小应急单元应急预案
- 一年级第一学期口算题(20以内口算天天练-15份各100题精确排版)
- 公司月度安全生产综合检查表
- 重庆市康德卷2023-2024学年物理高二上期末综合测试试题含解析
- (银川市直部门之间交流)2022事业单位工作人员调动表
- 七年级音乐下册 第4单元《北京喜讯到边寨》课件1 花城版
- 飞行员献身国防志愿书1000字
- 瓷砖采购投标方案
- 世界国家地区区域划分 Excel对照表 简
- 移动互联网的实训报告优秀三篇
评论
0/150
提交评论