2022年甘肃省兰州市联片办学数学高二下期末达标检测试题含解析_第1页
2022年甘肃省兰州市联片办学数学高二下期末达标检测试题含解析_第2页
2022年甘肃省兰州市联片办学数学高二下期末达标检测试题含解析_第3页
2022年甘肃省兰州市联片办学数学高二下期末达标检测试题含解析_第4页
2022年甘肃省兰州市联片办学数学高二下期末达标检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高二下数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知三个正态分布密度函数(, )的图象如图所示则( )ABCD2对于命题“正三角形的内切圆切于三边的中点”,可类比猜想出正四面体的内切球切于四面体( )A各正三角形内的点 B各正三

2、角形的中心C各正三角形某高线上的点 D各正三角形各边的中点3函数f(x)xsinx+cosx的导函数为,则导函数的部分图象大致是()ABCD4抛物线的焦点到双曲线的渐近线的距离为( )ABC1D5下图是一个几何体的三视图,则该几何体的体积为( )ABCD6已知复数满足,则复数在复平面内对应的点为 ( )ABCD7设函数在上存在导函数,对于任意的实数,都有,当时,若,则实数的取值范围是( )ABCD8在中,分别为内角的对边,若,且,则( )A2B3C4D59函数的部分图象大致是( )ABCD10下面几种推理过程是演绎推理的是( )A在数列|中,由此归纳出的通项公式B由平面三角形的性质,推测空间四

3、面体性质C某校高二共有10个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D两条直线平行,同旁内角互补,如果和是两条平行直线的同旁内角,则11已知是定义在上的函数,且对任意的都有,若角满足不等式,则的取值范围是( )ABCD12已知,“函数有零点”是“函数在上是减函数”的( )A充分不必要条件B必要不充分条件C充要条件D即不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。13已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为_14已知函数f(x)满足:f(1)2,f(x1),则f(2018)= _.15某公司从甲、乙、丙、丁四名员工中安排了一名员工出

4、国研学.有人询问了四名员工,甲说:好像是乙或丙去了.”乙说:“甲、丙都没去”丙说:“是丁去了”丁说:“丙说的不对.”若四名员工中只有一个人说的对,则出国研学的员工是_.16总体由编号为01,02,19,20的20个个体组成利用下面的随机数表选取5个个体,选取方法从随机数表的第1行第4列数由左到右由上到下开始读取,则选出来的第5个个体的编号为_第1行 78 16 65 71 02 30 60 14 01 02 40 60 90 28 01 98第2行 32 04 92 34 49 35 82 00 36 23 48 69 69 38 74 81三、解答题:共70分。解答应写出文字说明、证明过程或

5、演算步骤。17(12分)已知是定义域为的奇函数,且当时,设“”.(1)若为真,求实数的取值范围;(2)设集合与集合的交集为,若为假,为真,求实数的取值范围. 18(12分)过椭圆:右焦点的直线交于,两点,且椭圆的长轴长为短轴长的倍.(1)求的方程;(2),为上的两点,若四边形的对角线分别为,且,求四边形面积的最大值.19(12分)在直角坐标系中,曲线的参数方程为(为参数),在以坐标为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程,并指出曲线是什么曲线;(2)若直线与曲线相交于两点,求的值.20(12分)在中,分别为内角的对边,已知 () 求;()若,求的面积21(

6、12分)如图,在四棱锥中,平面,四边形为正方形, 是的中点,是的中点.(1)求此四棱锥的体积;(2)求证:平面;(3)求证:平面平面22(10分)已知函数()求函数的最大值; ()已知,求证参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】正态曲线关于x对称,且越大图象越靠近右边,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,又有越小图象越瘦长,得到正确的结果【详解】根据课本中对正太分布密度函数的介绍知道:当正态分布密度函数为,则对应的函数的图像的对称轴为:,正态曲线关于x对称,且越大图象越靠近右边

7、,第一个曲线的均值比第二和第三和图象的均值小,且二,三两个的均值相等,只能从A,D两个答案中选一个,越小图象越瘦长,得到第二个图象的比第三个的要小,第一个和第二个的相等故选D【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,考查密度函数中两个特征数均值和标准差对曲线的位置和形状的影响,是一个基础题2、B【解析】四面体的面可以与三角形的边类比,因此三边的中点也就类比成各三角形的中心,故选择B.3、C【解析】先求得函数的导数,根据导函数的奇偶性和正负,判断出正确选项.【详解】,为奇函数,且在上有,故选C.【点睛】本小题主要考查导数运算,考查函数的奇偶性,考查函数图像的识别,属于基础题.4、B【

8、解析】抛物线的焦点为:,双曲线的渐近线为:.点到渐近线的距离为:.故选B.5、B【解析】根据三视图得到原图是,边长为2的正方体,挖掉八分之一的球,以正方体其中一个顶点为球的球心。【详解】根据三视图得到原图是,边长为2的正方体,挖掉八分之一的球,以正方体其中一个顶点为球的球心,故剩余的体积为: 故答案为:B.【点睛】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据

9、俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.6、A【解析】利用复数除法运算,化简为的形式,由此求得对应的点的坐标.【详解】依题意,对应的点为,故选A.【点睛】本小题主要考查复数的除法运算,考查复数对应点的坐标,属于基础题.7、A【解析】记,由可得,所以为奇函数,又当时,结合奇函数性质,可得在上单调递减,处理,得,所以,可得出的范围.【详解】解:因为,所以记,则所以为奇函数,且又因为当时,即所以当时,单调递减又因为为奇函数,所以在上单调递减若则即所以所以故选:A.【点睛】本题考查了函数单调性与奇偶性的综合运用,利用导

10、数研究函数的单调性,构造函数法解决抽象函数问题,观察结构特点巧妙构造函数是关键.8、C【解析】利用正弦定理可得:, 由余弦定理可得:, 由,得, 由 得,故选C.9、B【解析】先判断函数奇偶性,再根据对应区间函数值的正负确定选项.【详解】为偶函数,舍去A;当时,舍去C;当时,舍去D;故选:B【点睛】本题考查函数奇偶性以及识别函数图象,考查基本分析求解判断能力,属基础题.10、D【解析】分析:演绎推理是由普通性的前提推出特殊性结论的推理其形式在高中阶段主要学习了三段论:大前提、小前提、结论,由此对四个命题进行判断得出正确选项详解:A在数列an中,a1=1,通过计算a2,a3,a4由此归纳出an的

11、通项公式”是归纳推理B选项“由平面三角形的性质,推出空间四边形的性质”是类比推理C选项“某校高二(1)班有55人,高二(2)班有52人,由此得高二所有班人数超过50人”是归纳推理;D选项选项是演绎推理,大前提是“两条直线平行,同旁内角互补,”,小前提是“A与B是两条平行直线的同旁内角”,结论是“A+B=180,是演绎推理.综上得,D选项正确故选:D 点睛:本题考点是进行简单的演绎推理,解题的关键是熟练掌握演绎推理的定义及其推理形式,演绎推理是由普通性的前提推出特殊性结论的推理演绎推理主要形式有三段论,其结构是大前提、小前提、结论11、A【解析】构造新函数,由可得为单调减函数,由可得为奇函数,从

12、而解得的取值范围.【详解】解:令因为,所以为R上的单调减函数,又因为,所以,即,即,所以函数为奇函数,故,即为,化简得,即,即,由单调性有,解得,故选A.【点睛】本题考查了函数性质的综合运用,解题的关键是由题意构造出新函数,研究其性质,从而解题.12、B【解析】试题分析:由题意得,由函数有零点可得,而由函数在上为减函数可得,因此是必要不充分条件,故选B考点:1.指数函数的单调性;2.对数函数的单调性;3.充分必要条件.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用导数求出切线斜率,根据点斜式求得切线方程,将圆心坐标代入切线方程,进而可得结果.【详解】因为,切线的斜率,所以切

13、线方程为,即.因为圆的圆心为,所以,所以实数的值为-4,故答案为-4.【点睛】本题主要考查利用导数求曲线切线方程,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.14、-1【解析】由已知分析出函数f(x)的值以4为周期,呈周期性变化,可得答案【详解】函数f(x)满足:f(1)=2,f(x+1)=,f(2)=1,f(1)=,f(4)=,f(5)=2,即函数f(x)的值以4为周期,呈周期性变化,2018=5044+2,故f(2018)=f(2)=1,故答案为:1【点睛】本题考查的

14、知识点是函数求值,函数的周期性,难度不大,属于中档题15、甲【解析】分别假设是甲、乙、丙、丁去时,四个人所说的话的正误,进而确定结果.【详解】若乙去,则甲、乙、丁都说的对,不符合题意;若丙去,则甲、丁都说的对,不符合题意;若丁去,则乙、丙都说的对,不符合题意;若甲去,则甲、乙、丙都说的不对,丁说的对,符合题意.故答案为:甲.【点睛】本题考查逻辑推理的相关知识,属于基础题.16、02;【解析】第1行第4列数是6,由左到右进行读取10,06,01,09,02.【详解】第1行第4列数是6,由左到右进行读取10,06,01,09,02,所以第5个个体的编号为02.【点睛】随机数表中如果个体编号是2位数

15、,则从规定的地方数起,是每次数两位数,如果碰到超出编号范围,则不选;如果碰到选过的,也不选.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】试题分析:(1)由已知可得,函数为上的奇函数、且为增函数,由命题为真,则,所以,从而解得;(2)由集合,若为真,则,因为“为假,为真”等价于“、一真一假”,因此若真假,则;若假真,则.从而可得,实数的取值范围是.试题解析:函数是奇函数,当时,函数为上的增函数,若为真,则,解得(2),若为真,则,为假,为真,、一真一假,若真假,则;若假真,则综上,实数的取值范围是考点:1.函数性质的应用;2.命题的真假判断及其逻辑

16、运算.18、 (1);(2).【解析】分析:(1)根据题意,结合性质 ,列出关于 、 、的方程组,求出 、 、,即可得到的方程;(2)先求出,直线的方程为,联立方程组消去得:,利用韦达定理、弦长公式可得,结合可得四边形的面积,从而可得结果.详解:(1)由题意知解得,所以的方程为:.(2)联立方程组,解得、,求得.依题意可设直线的方程为:,与线段相交,联立方程组消去得:,设,则,四边形的面积,当时,最大,最大值为.所以四边形的面积最大值为.点睛:求椭圆标准方程的方法一般为待定系数法,根据条件确定关于的方程组,解出从而写出椭圆的标准方程解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与

17、椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题涉及弦中点的问题常常用“点差法”解决,往往会更简单.19、 (1) 曲线的轨迹是以为圆心,3为半径的圆. (2) 【解析】(1)由曲线的参数方程,消去参数,即可得到曲线的普通方程,得出结论;(2)把直线的极坐标方程化为直角坐标方程,再由点到直线的距离公式,列出方程,即可求解。【详解】(1)由(为参数),消去参数得,故曲线的普通方程为.曲线的轨迹是以为圆心,3为半径的圆.(2)由,展开得,的直角坐标方程为.则圆心到直线的距离为,则,解得.【点睛】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化及应用,重点考查了

18、转化与化归能力.通常遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.20、 () () 【解析】()方法一:由A(0,)可得,利用,即可得出,方法二:利用,即可得出;()方法一:由余弦定理得 a2=b2+c22bccosA,可得c,即可得出三角形面积计算公式,方法二:由正弦定理得,从而,可得cosB可得sinC=sin(A+B),利用三角形面积计算公式即可得出【详解】()方法一: 由得,因此方法二:,由于,所以 ()方法一:由余弦定理得 而,得,即因为,所以故的面积 方法二:由正弦定理得从而又由,知,所以为锐角, 故 所以【点睛】本题考查了三角形面积计算公式、正弦定理余弦定理、同角三角函数基本关系式、和差公式,考查了推理能力与计算能力,属于中档题21、(1);(2)证明见解析;(3)证明见解析【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论