版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023年浙江省杭州西兴中学中考数学最后冲刺浓缩精华卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题(共10小题,每小题3分,共30分)1关于x的一元二次方程(a1
2、)x2+x+a210的一个根为0,则a值为()A1B1C1D02已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( )A3B5C1或3D1或53实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()Aa1Bab0Cab0Da+b04如图,在平面直角坐标系中,OAB的顶点A在x轴正半轴上,OC是OAB的中线,点B、C在反比例函数y=(x0)的图象上,则OAB的面积等于()A2B3C 4D65如图是由7个同样大小的正方体摆成的几何体将正方体移走后,所得几何体()A主视图不变,左视图不变B左视图改变,俯视图改变C主视图改变,俯视图改变D俯视图不变,左视图改变
3、6如图,点O在第一象限,O与x轴相切于H点,与y轴相交于A(0,2),B(0,8),则点O的坐标是()A(6,4)B(4,6)C(5,4)D(4,5)7如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为( )ABCD8已知一元二次方程有一个根为2,则另一根为A2B3C4D89一个数和它的倒数相等,则这个数是( )A1B0C1D1和010cos45的值是()ABCD1二、填空题(本大题共6个小题,每小题3分,共18分)11在平面直角坐标系中,已知线段AB的两个端点的坐标分别是A(4,1)、B(1,1),将线段AB平移后
4、得到线段AB,若点A的坐标为(2,2),则点B的坐标为_12已知O的半径为5,由直径AB的端点B作O的切线,从圆周上一点P引该切线的垂线PM,M为垂足,连接PA,设PA=x,则AP+2PM的函数表达式为_,此函数的最大值是_,最小值是_13如图,四边形OABC中,ABOC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若BDE、OCE的面积分别为1和9,反比例函数y=的图象经过点B,则k=_.14用一个圆心角为120,半径为4的扇形作一个圆锥的侧面,这个圆锥的底面圆的半径为_15把多项式9x3x分解因式的结果是_16如图,在33的方格中
5、,A、B、C、D、E、F分别位于格点上,从C、D、E、F四点中任取一点,与点A、B为顶点作三角形,则所作三角形为等腰三角形的概率是_三、解答题(共8题,共72分)17(8分)在矩形ABCD中,AB6,AD8,点E是边AD上一点,EMEC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项如图1,求证:ANEDCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长18(8分)如图,在RtABC中,C90,AB的垂直平分线交AC于点D,交AB于点E(1)求证:ADEABC;(2)当AC8,BC
6、6时,求DE的长19(8分)观察猜想:在RtABC中,BAC=90,AB=AC,点D在边BC上,连接AD,把ABD绕点A逆时针旋转90,点D落在点E处,如图所示,则线段CE和线段BD的数量关系是 ,位置关系是 探究证明:在(1)的条件下,若点D在线段BC的延长线上,请判断(1)中结论是还成立吗?请在图中画出图形,并证明你的判断拓展延伸:如图,BAC90,若ABAC,ACB=45,AC=,其他条件不变,过点D作DFAD交CE于点F,请直接写出线段CF长度的最大值20(8分)如图,一次函数ykxb的图象与反比例函数ymx(1)求一次函数,反比例函数的表达式;(2)求证:点C为线段AP的中点;(3)
7、反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由21(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图假设你站在A处测得塔杆顶端C的仰角是55,沿HA方向水平前进43米到达山底G处,在山顶B处发现正好一叶片到达最高位置,此时测得叶片的顶端D(D、C、H在同一直线上)的仰角是45已知叶片的长度为35米(塔杆与叶片连接处的长度忽略不计),山高BG为10米,BGHG,CHAH,求塔杆CH的高(参考数据:tan551.4,tan350.7,sin550.8,sin350.6)
8、22(10分)从2017年1月1日起,我国驾驶证考试正式实施新的驾考培训模式,新规定C2驾驶证的培训学时为40学时,驾校的学费标准分不同时段,普通时段a元/学时,高峰时段和节假日时段都为b元/学时(1)小明和小华都在此驾校参加C2驾驶证的培训,下表是小明和小华的培训结算表(培训学时均为40),请你根据提供的信息,计算出a,b的值学员培训时段培训学时培训总费用小明普通时段206000元高峰时段5节假日时段15小华普通时段305400元高峰时段2节假日时段8(2)小陈报名参加了C2驾驶证的培训,并且计划学够全部基本学时,但为了不耽误工作,普通时段的培训学时不会超过其他两个时段总学时的,若小陈普通时
9、段培训了x学时,培训总费用为y元求y与x之间的函数关系式,并确定自变量x的取值范围;小陈如何选择培训时段,才能使得本次培训的总费用最低?23(12分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示,设点B所表示的数为m求m的值;求|m1|+(m+6)0的值24在“打造青山绿山,建设美丽中国”的活动中,某学校计划组织全校1441名师生到相关部门规划的林区植树,经过研究,决定租用当地租车公司一共62辆A、B两种型号客车作为交通工具,下表是租车公司提供给学校有关两种型号客车的载客量和租金信息:型号载客量租金单价A30人/辆380元/辆B20人/辆280元/辆注:载客量指的是每辆客车最多
10、可载该校师生的人数.(1)设租用A型号客车x辆,租车总费用为y元,求y与x的函数解析式。(2)若要使租车总费用不超过19720元,一共有几种租车方案?那种租车方案最省钱?2023学年模拟测试卷参考答案(含详细解析)一、选择题(共10小题,每小题3分,共30分)1、B【答案解析】根据一元二次方程的定义和一元二次方程的解的定义得出:a10,a210,求出a的值即可【题目详解】解:把x0代入方程得:a210,解得:a1,(a1)x2+x+a210是关于x的一元二次方程,a10,即a1,a的值是1故选:B【答案点睛】本题考查了对一元二次方程的定义,一元二次方程的解等知识点的理解和运用,注意根据已知得出
11、a10,a210,不要漏掉对一元二次方程二次项系数不为0的考虑2、A【答案解析】分析:根据点A(a2,4)和B(3,2a2)到x轴的距离相等,得到4|2a2|,即可解答详解:点A(a2,4)和B(3,2a2)到x轴的距离相等,4|2a2|,a23,解得:a3,故选A点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数3、C【答案解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案【题目详解】选项A,从数轴上看出,a在1与0之间,1a0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,a0,b0,ab0,故选项B
12、不合题意;选项C,从数轴上看出,a在b的左侧,ab,即ab0,故选项C符合题意;选项D,从数轴上看出,a在1与0之间,1b2,|a|b|,a0,b0,所以a+b|b|a|0,故选项D不合题意故选:C【答案点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.4、B【答案解析】作BDx轴于D,CEx轴于E,BDCE,OC是OAB的中线,设CE=x,则BD=2x,C的横坐标为,B的横坐标为,OD=,OE=,DE=OE-OD=,AE=DE=,OA=OE+AE=,SOAB=OABD=1故选B.点睛:本题是反比例函数与几何的综合题,熟知反比例函数的图象上点的特征和相似三角形的判
13、定和性质是解题的关键.5、A【答案解析】分别得到将正方体移走前后的三视图,依此即可作出判断【题目详解】将正方体移走前的主视图为:第一层有一个正方形,第二层有四个正方形,正方体移走后的主视图为:第一层有一个正方形,第二层有四个正方形,没有改变。将正方体移走前的左视图为:第一层有一个正方形,第二层有两个正方形,正方体移走后的左视图为:第一层有一个正方形,第二层有两个正方形,没有发生改变。将正方体移走前的俯视图为:第一层有四个正方形,第二层有两个正方形,正方体移走后的俯视图为:第一层有四个正方形,第二层有两个正方形,发生改变。故选A.【答案点睛】考查了三视图,从几何体的正面,左面,上面看到的平面图形
14、中正方形的列数以及每列正方形的个数是解决本题的关键.6、D【答案解析】过O作OCAB于点C,过O作ODx轴于点D,由切线的性质可求得OD的长,则可得OB的长,由垂径定理可求得CB的长,在RtOBC中,由勾股定理可求得OC的长,从而可求得O点坐标【题目详解】如图,过O作OCAB于点C,过O作ODx轴于点D,连接OB,O为圆心,AC=BC,A(0,2),B(0,8),AB=82=6,AC=BC=3,OC=83=5,O与x轴相切,OD=OB=OC=5,在RtOBC中,由勾股定理可得OC=4,P点坐标为(4,5),故选:D.【答案点睛】本题考查了切线的性质,坐标与图形性质,解题的关键是掌握切线的性质和
15、坐标计算.7、B【答案解析】连接BF,由折叠可知AE垂直平分BF,根据勾股定理求得AE=5,利用直角三角形面积的两种表示法求得BH=,即可得BF= ,再证明BFC=90,最后利用勾股定理求得CF=【题目详解】连接BF,由折叠可知AE垂直平分BF,BC=6,点E为BC的中点,BE=3,又AB=4,AE=5,BH=,则BF= ,FE=BE=EC,BFC=90,CF= 故选B【答案点睛】本题考查的是翻折变换的性质、矩形的性质及勾股定理的应用,掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键8、C【答案解析】测试卷分析:利用根与系数的关系来求
16、方程的另一根设方程的另一根为,则+2=6, 解得=1考点:根与系数的关系9、C【答案解析】根据倒数的定义即可求解.【题目详解】的倒数等于它本身,故符合题意.故选:.【答案点睛】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.10、C【答案解析】本题主要是特殊角的三角函数值的问题,求解本题的关键是熟悉特殊角的三角函数值.【题目详解】cos45= .故选:C.【答案点睛】本题考查特殊角的三角函数值.二、填空题(本大题共6个小题,每小题3分,共18分)11、 (5,4)【答案解析】测试卷解析:由于图形平移过程中,对应点的平移规律相同,由点A到点A可知,点的横坐标减
17、6,纵坐标加3,故点B的坐标为 即 故答案为: 12、x2+x+20(0 x10) 不存在 【答案解析】先连接BP,AB是直径,BPBM,所以有,BMP=APB=90,又PBM=BAP,那么有PMBPAB,于是PM:PB=PB:AB,可求从而有(0 x10),再根据二次函数的性质,可求函数的最大值【题目详解】如图所示,连接PB,PBM=BAP,BMP=APB=90,PMBPAB,PM:PB=PB:AB,(0 x10), AP+2PM有最大值,没有最小值,y最大值= 故答案为(0 x10),不存在【答案点睛】考查相似三角形的判定与性质,二次函数的最值等,综合性比较强,需要熟练掌握.13、16【答
18、案解析】根据题意得SBDE:SOCE=1:9,故BD:OC=1:3,设D(a,b)则A(a,0),B(a,2b),得C(0,3b),由SOCE=9得ab=8,故可得解.【题目详解】解:设D(a,b)则A(a,0),B(a,2b)SBDE:SOCE=1:9BD:OC=1:3C(0,3b)COE高是OA的,SOCE=3ba =9解得ab=8k=a2b=2ab=28=16故答案为16.【答案点睛】此题利用了:过某个点,这个点的坐标应适合这个函数解析式;所给的面积应整理为和反比例函数上的点的坐标有关的形式14、【答案解析】测试卷分析:,解得r=考点:弧长的计算15、x(3x+1)(3x1)【答案解析】
19、提取公因式分解多项式,再根据平方差公式分解因式,从而得到答案.【题目详解】9x3xx(9x21)x(3x1)(3x1),故答案为x(3x1)(3x1).【答案点睛】本题主要考查了因式分解以及平方差公式,解本题的要点在于熟知多项式分解因式的相关方法.16、【答案解析】解:根据从C、D、E、F四个点中任意取一点,一共有4种可能,选取D、C、F时,所作三角形是等腰三角形,故P(所作三角形是等腰三角形)=;故答案为【答案点睛】本题考查概率的计算及等腰三角形的判定,熟记等要三角形的性质及判定方法和概率的计算公式是本题的解题关键三、解答题(共8题,共72分)17、(1)见解析;(2);(1)DE的长分别为
20、或1【答案解析】(1)由比例中项知,据此可证AMEAEN得AEMANE,再证AEMDCE可得答案;(2)先证ANEEAC,结合ANEDCE得DCEEAC,从而知,据此求得AE8,由(1)得AEMDCE,据此知,求得AM,由求得MN;(1)分ENMEAC和ENMECA两种情况分别求解可得【题目详解】解:(1)AE是AM和AN的比例中项,AA,AMEAEN, AEMANE,D90,DCEDEC90,EMBC,AEMDEC90,AEMDCE,ANEDCE;(2)AC与NE互相垂直,EACAEN90,BAC90,ANEAEN90,ANEEAC,由(1)得ANEDCE,DCEEAC,tanDCEtanD
21、AC,DCAB6,AD8,DE,AE8,由(1)得AEMDCE,tanAEMtanDCE,AM,AN,MN;(1)NMEMAEAEM,AECDDCE,又MAED90,由(1)得AEMDCE,AECNME,当AEC与以点E、M、N为顶点所组成的三角形相似时ENMEAC,如图2, ANEEAC,由(2)得:DE;ENMECA,如图1,过点E作EHAC,垂足为点H,由(1)得ANEDCE,ECADCE,HEDE,又tanHAE,设DE1x,则HE1x,AH4x,AE5x,又AEDEAD,5x1x8,解得x1,DE1x1,综上所述,DE的长分别为或1【答案点睛】本题是相似三角形的综合问题,解题的关键是
22、掌握相似三角形的判定与性质、三角函数的应用等知识点18、(1)见解析;(2)【答案解析】(1)根据两角对应相等,两三角形相似即可判定;(2)利用相似三角形的性质即可解决问题【题目详解】(1)DEAB,AED=C=90A=A,AEDACB(2)在RtABC中,AC=8,BC=6,AB1DE垂直平分AB,AE=EB=2AEDACB,DE【答案点睛】本题考查了相似三角形的判定和性质、勾股定理、线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型19、(1)CE=BD,CEBD(2)(1)中的结论仍然成立理由见解析;(3).【答案解析】分析:(1)线段AD绕点A逆时针
23、旋转90得到AE,根据旋转的性质得到AD=AE,BAD=CAE,得到BADCAE,CE=BD,ACE=B,得到BCE=BCA+ACE=90,于是有CE=BD,CEBD(2)证明的方法与(1)类似(3)过A作AMBC于M,ENAM于N,根据旋转的性质得到DAE=90,AD=AE,利用等角的余角相等得到NAE=ADM,易证得RtAMDRtENA,则NE=MA,由于ACB=45,则AM=MC,所以MC=NE,易得四边形MCEN为矩形,得到DCF=90,由此得到RtAMDRtDCF,得,设DC=x,MD=1-x,利用相似比可得到CF=-x2+1,再利用二次函数即可求得CF的最大值详解:(1)AB=AC
24、,BAC=90,线段AD绕点A逆时针旋转90得到AE,AD=AE,BAD=CAE,BADCAE,CE=BD,ACE=B,BCE=BCA+ACE=90,BDCE;故答案为CE=BD,CEBD(2)(1)中的结论仍然成立理由如下:如图,线段AD绕点A逆时针旋转90得到AE,AE=AD,DAE=90,AB=AC,BAC=90CAE=BAD,ACEABD,CE=BD,ACE=B,BCE=90,即CEBD,线段CE,BD之间的位置关系和数量关系分别为:CE=BD,CEBD(3)如图3,过A作AMBC于M,ENAM于N,线段AD绕点A逆时针旋转90得到AEDAE=90,AD=AE,NAE=ADM,易证得R
25、tAMDRtENA,NE=AM,ACB=45,AMC为等腰直角三角形,AM=MC,MC=NE,AMBC,ENAM,NEMC,四边形MCEN为平行四边形,AMC=90,四边形MCEN为矩形,DCF=90,RtAMDRtDCF,设DC=x,ACB=45,AC=,AM=CM=1,MD=1-x,CF=-x2+x=-(x-)2+,当x=时有最大值,CF最大值为点睛:本题考查了旋转的性质:旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等也考查了等腰直角三角形的性质和三角形全等及相似的判定与性质20、(1)y24x1. (2)点C为线段AP的中点. (3)存在点D
26、,使四边形BCPD为菱形,点D【答案解析】测试卷分析:(1)由点A与点B关于y轴对称,可得AOBO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AOBO,PBCO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y-8测试卷解析:(1)点A与点B关于y轴对称,AOBO,A(4,0),B(4,0),P(4,2),把P(4,2)代入ymx得m反比例函数的解析式:y8x把A(4,0),P(4,2
27、)代入ykxb得:0=-4k+b2=4k+b,解得:所以一次函数的解析式:y24x(2)点A与点B关于y轴对称,OA=OB PB丄x轴于点B,PBA=90,COA=90,PBCO,点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形点C为线段AP的中点,BC=12BC和PC是菱形的两条边由y14x1,可得点C过点C作CD平行于x轴,交PB于点E,交反比例函数y-8x的图象于点分别连结PD、BD,点D(8,1), BPCDPEBE1, CEDE4,PB与CD互相垂直平分, 四边形BCPD为菱形. 点D(8,1)即为所求.21、1米【答案解析】测试卷分析:作BEDH,知GH=BE、BG=EH=10,设AH=x,则BE=GH=43+x,由CH=AHtanCAH=tan55x知CE=CHEH=tan55x10,根据BE=DE可得关于x的方程,解之可得测试卷解析:解:如图,作BEDH于点E,则GH=BE、BG=EH=10,设AH=x,则BE=GH=GA+AH=43+x,在RtACH中,CH=AHtanCAH=tan55x,CE=CHEH=tan55x10,DBE=45,BE=DE=CE+DC,即43+x=tan55x10+35,解得:x45,CH=tan55x=1.445=1答:塔杆CH的高为1米点睛:本
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年二手车销售无忧协议范本
- 2024年住宅漏水赔偿标准合同范本版B版
- 2024年代理房屋买卖全流程手续服务协议版B版
- 2024商业场所卫生清洁服务合同样本版B版
- 2024年个体养殖户鱼塘租赁协议版B版
- 2024年书房隔音改善项目实施协议一
- 2024年LED屏租赁服务协议版B版
- 2024温室大棚建设工程合同书
- 2024年企业智能化改造项目合同
- 2024租用潜水船及潜水人员合同
- 防爆型除湿机施工方案
- 乡镇林业工作站站长应知应会1000题
- 大学语文优质课件《韩孟诗派》
- 2023年国家宪法宣传周知识竞赛答题考试题库300题(含答案)
- 机械原理-第4章力分析
- 浙江省衢州市衢江区2023-2024学年六年级上学期11月期中科学试题
- 液化石油气脱硫技术研究
- 1999-2023年南京大学844环境工程学考研真题及答案解析汇编
- 06K131 风管测量孔和检查门
- 第20课 皮影戏(说课稿)2022-2023学年美术三年级上册
- 纤维支气管镜检查术护理查房
评论
0/150
提交评论