




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年高考数学模拟测试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1马林梅森是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物,梅森在欧几里得、费马等人研究的基础上对2p1作了大量的计算、验证工作,人们为了纪念梅森在数论方面的这一贡
2、献,将形如2P1(其中p是素数)的素数,称为梅森素数.若执行如图所示的程序框图,则输出的梅森素数的个数是( )A3B4C5D62若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为( )ABCD3已知集合,则=ABCD4据国家统计局发布的数据,2019年11月全国CPI(居民消费价格指数),同比上涨4.5%,CPI上涨的主要因素是猪肉价格的上涨,猪肉加上其他畜肉影响CPI上涨3.27个百分点下图是2019年11月CPI一篮子商品权重,根据该图,下列结论错误的是( )ACPI一篮子商品中所占权重最大的是居住BCPI一篮子商品中吃穿住所占权重超过50%C猪肉在CPI一
3、篮子商品中所占权重约为2.5%D猪肉与其他畜肉在CPI一篮子商品中所占权重约为0.18%5是虚数单位,复数在复平面上对应的点位于( )A第一象限B第二象限C第三象限D第四象限6已知与函数和都相切,则不等式组所确定的平面区域在内的面积为( )ABCD7已知在平面直角坐标系中,圆:与圆:交于,两点,若,则实数的值为( )A1B2C-1D-28已知定义在上的奇函数,其导函数为,当时,恒有则不等式的解集为( )ABC或D或9过双曲线 的左焦点作直线交双曲线的两天渐近线于,两点,若为线段的中点,且(为坐标原点),则双曲线的离心率为( )ABCD10已知函数(其中,)的图象关于点成中心对称,且与点相邻的一
4、个最低点为,则对于下列判断:直线是函数图象的一条对称轴;点是函数的一个对称中心;函数与的图象的所有交点的横坐标之和为.其中正确的判断是( )ABCD11已知函数,其中为自然对数的底数,若存在实数,使成立,则实数的值为( )ABCD12函数满足对任意都有成立,且函数的图象关于点对称,则的值为( )A0B2C4D1二、填空题:本题共4小题,每小题5分,共20分。13已知椭圆:,F1、F2是椭圆的左、右焦点,A为椭圆的上顶点,延长AF2交椭圆于点B,若为等腰三角形,则椭圆的离心率为_.14某中学高一年级有学生1200人,高二年级有学生900人,高三年级有学生1500人,现按年级用分层抽样的方法从这三
5、个年级的学生中抽取一个容量为720的样本进行某项研究,则应从高三年级学生中抽取_人15已知随机变量,且,则_16的角所对的边分别为,且,若,则的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知如图1,在RtABC中,ACB=30,ABC=90,D为AC中点,AEBD于E,延长AE交BC于F,将ABD沿BD折起,使平面ABD平面BCD,如图2所示。()求证:AE平面BCD; ()求二面角A-DC-B的余弦值; ()求三棱锥B-AEF与四棱锥A-FEDC的体积的比(只需写出结果,不要求过程)18(12分)在中,角、所对的边分别为、,角、的度数成等差数列,.(
6、1)若,求的值;(2)求的最大值.19(12分)如图,在直角中,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.(1)证明:平面;(2)当直线与平面所成的角取最大值时,求二面角的正弦值.20(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.21(12分)为迎接2023年冬奥会,北京市组织中学生开展冰雪运动的培训活动,并在培训结束后对学生进行了考核记表示学生的考核成绩,并规定为考核优秀为了了解本次培训活动的效果,在参加培训的学生中随机抽取了30名学生的考核成绩,并作成如下茎叶图:()从参加培训的学生中随机选取1人,请根据图中数据,估计这名学生考核优秀的概率;
7、()从图中考核成绩满足的学生中任取2人,求至少有一人考核优秀的概率;()记表示学生的考核成绩在区间的概率,根据以往培训数据,规定当时培训有效请根据图中数据,判断此次中学生冰雪培训活动是否有效,并说明理由22(10分)已知是各项都为正数的数列,其前项和为,且为与的等差中项(1)求证:数列为等差数列;(2)设,求的前100项和2023学年模拟测试卷参考答案(含详细解析)一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【答案解析】模拟程序的运行即可求出答案【题目详解】解:模拟程序的运行,可得:p1,S1,输出S的值为1,满足条件p7,执行循
8、环体,p3,S7,输出S的值为7,满足条件p7,执行循环体,p5,S31,输出S的值为31,满足条件p7,执行循环体,p7,S127,输出S的值为127,满足条件p7,执行循环体,p9,S511,输出S的值为511,此时,不满足条件p7,退出循环,结束,故若执行如图所示的程序框图,则输出的梅森素数的个数是5,故选:C【答案点睛】本题主要考查程序框图,属于基础题2、C【答案解析】由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值【题目详解】解:把函数的图象向右平移个单位长度得到函数的图象,若函数在区间,上单调递增,在区间,上,则当最大时,求得,故选:C【答案点睛】本题主要考查函数的图象
9、变换规律,正弦函数的单调性,属于基础题3、C【答案解析】本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养采取数轴法,利用数形结合的思想解题【题目详解】由题意得,则故选C【答案点睛】不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分4、D【答案解析】A.从第一个图观察居住占23%,与其他比较即可. B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,再判断.C.食品占19.9%,再看第二个图,分清2.5%是在CPI一篮子商品中,还是在食品中即可.D. 易知猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%.【题
10、目详解】A. CPI一篮子商品中居住占23%,所占权重最大的,故正确.B. CPI一篮子商品中吃穿住所占23%+8%+19.9%=50.9%,权重超过50%,故正确.C.食品占中19.9%,分解后后可知猪肉是占在CPI一篮子商品中所占权重约为2.5%,故正确.D. 猪肉与其他畜肉在CPI一篮子商品中所占权重约为2.1%+2.5%=4.6%,故错误.故选:D【答案点睛】本题主要考查统计图的识别与应用,还考查了理解辨析的能力,属于基础题.5、D【答案解析】求出复数在复平面内对应的点的坐标,即可得出结论.【题目详解】复数在复平面上对应的点的坐标为,该点位于第四象限.故选:D.【答案点睛】本题考查复数
11、对应的点的位置的判断,属于基础题.6、B【答案解析】根据直线与和都相切,求得的值,由此画出不等式组所表示的平面区域以及圆,由此求得正确选项.【题目详解】.设直线与相切于点,斜率为,所以切线方程为,化简得.令,解得,所以切线方程为,化简得.由对比系数得,化简得.构造函数,所以在上递减,在上递增,所以在处取得极小值也即是最小值,而,所以有唯一解.也即方程有唯一解.所以切线方程为.即.不等式组即,画出其对应的区域如下图所示.圆可化为,圆心为.而方程组的解也是.画出图像如下图所示,不等式组所确定的平面区域在内的部分如下图阴影部分所示.直线的斜率为,直线的斜率为.所以,所以,而圆的半径为,所以阴影部分的
12、面积是.故选:B【答案点睛】本小题主要考查根据公共切线求参数,考查不等式组表示区域的画法,考查圆的方程,考查两条直线夹角的计算,考查扇形面积公式,考查数形结合的数学思想方法,考查分析思考与解决问题的能力,属于难题.7、D【答案解析】由可得,O在AB的中垂线上,结合圆的性质可知O在两个圆心的连线上,从而可求.【题目详解】因为,所以O在AB的中垂线上,即O在两个圆心的连线上,三点共线,所以,得,故选D.【答案点睛】本题主要考查圆的性质应用,几何性质的转化是求解的捷径.8、D【答案解析】先通过得到原函数为增函数且为偶函数,再利用到轴距离求解不等式即可.【题目详解】构造函数,则由题可知,所以在时为增函
13、数;由为奇函数,为奇函数,所以为偶函数;又,即即又为开口向上的偶函数所以,解得或故选:D【答案点睛】此题考查根据导函数构造原函数,偶函数解不等式等知识点,属于较难题目.9、C【答案解析】由题意可得双曲线的渐近线的方程为.为线段的中点,则为等腰三角形.由双曲线的的渐近线的性质可得,即.双曲线的离心率为故选C.点睛:本题考查了椭圆和双曲线的定义和性质,考查了离心率的求解,同时涉及到椭圆的定义和双曲线的定义及三角形的三边的关系应用,对于求解曲线的离心率(或离心率的取值范围),常见有两种方法:求出 ,代入公式;只需要根据一个条件得到关于的齐次式,转化为的齐次式,然后转化为关于的方程(不等式),解方程(
14、不等式),即可得(的取值范围)10、C【答案解析】分析:根据最低点,判断A=3,根据对称中心与最低点的横坐标求得周期T,再代入最低点可求得解析式为,依次判断各选项的正确与否详解:因为为对称中心,且最低点为,所以A=3,且 由 所以,将带入得 ,所以由此可得错误,正确,当时,所以与 有6个交点,设各个交点坐标依次为 ,则,所以正确所以选C点睛:本题考查了根据条件求三角函数的解析式,通过求得的解析式进一步研究函数的性质,属于中档题11、A【答案解析】令f(x)g(x)=x+exa1n(x+1)+4eax,令y=xln(x+1),y=1=,故y=xln(x+1)在(1,1)上是减函数,(1,+)上是
15、增函数,故当x=1时,y有最小值10=1,而exa+4eax4,(当且仅当exa=4eax,即x=a+ln1时,等号成立);故f(x)g(x)3(当且仅当等号同时成立时,等号成立);故x=a+ln1=1,即a=1ln1故选:A12、C【答案解析】根据函数的图象关于点对称可得为奇函数,结合可得是周期为4的周期函数,利用及可得所求的值.【题目详解】因为函数的图象关于点对称,所以的图象关于原点对称,所以为上的奇函数.由可得,故,故是周期为4的周期函数.因为,所以.因为,故,所以.故选:C.【答案点睛】本题考查函数的奇偶性和周期性,一般地,如果上的函数满足,那么是周期为的周期函数,本题属于中档题.二、
16、填空题:本题共4小题,每小题5分,共20分。13、【答案解析】由题意可得等腰三角形的两条相等的边,设,由题可得的长,在三角形中,三角形中由余弦定理可得的值相等,可得的关系,从而求出椭圆的离心率【题目详解】如图,若为等腰三角形,则|BF1|=|AB|.设|BF2|=t,则|BF1|=2at,所以|AB|=a+t=|BF1|=2at,解得a=2t,即|AB|=|BF1|=3t,|AF1|=2t,设BAO=,则BAF1=2,所以的离心率e=,结合余弦定理,易得在中,所以,即e= =,故答案为:.【答案点睛】此题考查椭圆的定义及余弦定理的简单应用,属于中档题.14【答案解析】先求得高三学生占的比例,再
17、利用分层抽样的定义和方法,即可求解.【题目详解】由题意,高三学生占的比例为,所以应从高三年级学生中抽取的人数为.【答案点睛】本题主要考查了分层抽样的定义和方法,其中解答中熟记分层抽样的定义和抽取的方法是解答的关键,着重考查了运算与求解能力,属于基础题.15、0.1【答案解析】根据原则,可得,简单计算,可得结果.【题目详解】由题可知:随机变量,则期望为所以故答案为:【答案点睛】本题考查正态分布的计算,掌握正态曲线的图形以及计算,属基础题.16、【答案解析】先利用余弦定理求出,再用正弦定理求出并把转化为与边有关的等式,结合可求的值.【题目详解】因为,故,因为,所以.由正弦定理可得三角形外接圆的半径
18、满足,所以即.因为,解得或(舍).故答案为:.【答案点睛】本题考查正弦定理、余弦定理在解三角形中的应用,注意结合求解目标对所得的方程组变形整合后整体求解,本题属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、()证明见解析;();()1:5【答案解析】()由平面ABD平面BCD,交线为BD,AEBD于E,能证明AE平面BCD;()以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,利用向量法求出二面角A-DC-B的余弦值;()利用体积公式分别求出三棱锥B-AEF与四棱锥A-FEDC的体积,再作比写出答案即可【题目详解】(
19、)证明:平面ABD平面BCD,交线为BD,又在ABD中,AEBD于E,AE平面ABD,AE平面BCD()由(1)知AE平面BCD,AEEF,由题意知EFBD,又AEBD,如图,以E为坐标原点,分别以EF、ED、EA所在直线为x轴,y轴,z轴,建立空间直角坐标系E-xyz,设AB=BD=DC=AD=2,则BE=ED=1,AE=,BC=2,BF=,则E(0,0,0),D(0,1,0),B(0,-1,0),A(0,0,),F(,0,0),C(,2,0),由AE平面BCD知平面BCD的一个法向量为,设平面ADC的一个法向量,则,取x=1,得,二面角A-DC-B的平面角为锐角,故余弦值为()三棱锥B-A
20、EF与四棱锥A-FEDC的体积的比为:1:5.【答案点睛】本题考查线面垂直的证明、几何体体积计算、二面角有关的立体几何综合题,属于中等题.18、 (1);(2)【答案解析】(1) 由角的度数成等差数列,得.又.由正弦定理,得,即.由余弦定理,得,即,解得.(2) 由正弦定理,得.由,得.所以当,即时,.【方法点睛】解三角形问题基本思想方法:从条件出发,利用正弦定理(或余弦定理)进行代换、转化逐步化为纯粹的边与边或角与角的关系,即考虑如下两条途径:统一成角进行判断,常用正弦定理及三角恒等变换;统一成边进行判断,常用余弦定理、面积公式等19、(1)见解析;(2)【答案解析】(1)先算出的长度,利用
21、勾股定理证明,再由已知可得,利用线面垂直的判定定理即可证明;(2)由(1)可得为直线与平面所成的角,要使其最大,则应最小,可得为中点,然后建系分别求出平面的法向量即可算得二面角的余弦值,进一步得到正弦值.【题目详解】(1)在中,由余弦定理得,由题意可知:,平面,平面,又,平面.(2)以为坐标原点,以,的方向为,轴的正方向,建立空间直角坐标系.平面,在平面上的射影是,与平面所成的角是,最大时,即,点为中点.,设平面的法向量,由,得,令,得,所以平面的法向量,同理,设平面的法向量,由,得,令,得,所以平面的法向量,故二面角的正弦值为.【答案点睛】本题考查线面垂直的判定定理以及利用向量法求二面角的正弦值,考查学生的运算求解能力,是一道中档题.20、(1);(2)证明见解析【答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 名牌轿车买卖合同
- 居间合同咨询服务合同
- 关于推进数字化转型的讨论
- 个人双包装修合同7篇
- 2025年白城货运资格证考试口诀
- 兼职合同合作协议
- 2025年长春货运从业资格证考试模拟考试题目答案
- 合伙共同经营宾馆合同8篇
- 个人房屋抵押借款服务合同5篇
- 新编信托借款合同5篇
- 古诗文教学方法创新研究
- 商场扶梯安全培训
- 开封市第一届职业技能大赛美容项目技术文件(世赛项目)
- 《全科医学概论》课件-以家庭为单位的健康照顾
- 自来水厂安全施工组织设计
- 川教版2024-2025学年六年级下册信息技术全册教案
- KTV商务礼仪培训
- 2024年《论教育》全文课件
- 计算机网络与信息安全(2024年版)课件 李全龙 第1-4章计算机网络与信息安全概述-网络层服务与协议
- 人工智能教育背景下中小学教师智能教育素养提升路径研究
- 必考古诗赏析知识点(九年级下册)-2025年中考语文一轮复习
评论
0/150
提交评论