下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、?等腰三角形的性质?说课稿教学内容:义务教育课程标准试验教科书八年级数学上册第十三章第三节等腰三角形的性质,下面我从六个方面对本课的教学设计进行说明:一、说教材本节课内容在初中数学教学中起着比较重要的作用,它是对三角形的性质的呈现。通过等腰三角形的性质反映在一个三角形中“等边对等角的边角关系,并且是对轴对称图形性质的直观反映三线合一。它所倡导的“观察-发现-猜想-论证的数学思想方法是今后研究数学的根本思想方法。因此,本节内容在教材中处于非常重要的地位,起着承前启后的作用。二.说教学目标1探索并证明等腰三角形的两个性质。2能利用性质证明两个角相等或两条线段相。3结合等腰三角形性质的探索与证明过程
2、,体会轴对称在研究几何问题中的作用。说重点:探索并证明等腰三角形的性质。说难点:性质1证明中辅助线的添加和对性质2的理解。三.说教法在教学中,不仅要使学生“知其然而且要使学生“知其所以然,“教必有法而教无定法,只有方法得当,才会有效。根据本课内容特点和初二学生思维活动的特点,我采用了教具直观教学法,联想发现教学法,设疑思考法,逐步渗透法和师生交际相结合的方法。使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。四.说学法只有好的学习方法才能培养能力,在学生探索知识的过程中培养他们掌握好的学习文教解题方法,并且通过自
3、己动手操作、动脑思考,动口表述,培养学生的观察、猜想、概括、表述、论证的能力。五.课标对本节课的要求探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;等腰三角形的顶角的平分线,底边上的中线,底边上的高互相重合。六.如何设置导学单是为了让学生在课前预习时有方向、有目标地进行自主预习,是辅助课堂学习的一种方式。五.说教学过程一知识回忆,导入新课多媒体出示学生独立思考,然后答复。设计意图:通过问题,了解等腰三角形的相关概念,复习等腰三角形的轴对称性,为突破教学难点探究及证明等腰三角形的性质做铺垫,分解教学难度。二探究新知【活动一】动手操作如图,把一张长方形的纸按图中虚线对折后,剪去阴影局部,再
4、把它展开,得到的三角形有什么特点。它是轴对称图形吗? 折叠过程中重合的线段和角有哪些?小组讨论、探究。教师指导学生折叠、剪纸。教师重点关注:1.学生操作过程的主动性与积极性;2. 学生的合作意识及结果的正确性。3.能否发现三角形的特点。填表:根据表格所填内容,学生尝试总结等腰三角的性质。角:B=C 两个底角相等ADB=ADC AD是底边BC上的高BAD=CDA AD为顶角BAC的平分线。边:BD=CD AD为底边BC上的中线由此总结等腰三角形的两个性质。设计意图:通过实验激发学生求知欲,调动学生参与教学的积极性。经历自己去操作、实验、发现的过程,认识数形结合的美妙,体验成功的喜悦。学生养成乐于
5、思考,善于观察,总结的学习品质和归纳、概括能力及语言表达能力。活动二小组讨论如何证明等腰三角形性质1学生分析性质1的条件和结论,并转化为数学符号:如图ABC中,AB=AC求证:B=C在教师的引导下,得出由添加辅助线的方法来构造两个全等的三角形,来证明B=C经过讨论,总结得出三种作辅助线构造两个三角形全等的方法:作底边上的中线作顶角的角平分线作底边上的高线老师在多媒体上展示证明过程并讲解。教师强调:1三种辅助线的添加方法要选最简单的方法;2利用性质1的前提是“在一个三角形中。设计意图:在教师的引导下逐步完成性质的证明,使学生加深了对辅助线的理解,培养学生完整的推理证明能力。【活动三】小组讨论如何
6、证明等腰三角形性质2.学生分析性质2的条件和结论,并转化为数学符号。思考: 由BAD CAD,除了可以得到 B= C之外,你还可以得到那些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现? 学生由全等三角形对应角相等,对应边相等。得到BAD=CDA,ADB=ADC,从而ADBC。由BD=DC得到AD为ABC的中线,这也就证明了性质2.教师引导学生从以上证明发现等腰三角形的对称轴就是底边上的中线顶角的角平分线、底边上的高所在的直线。设计意图:在教师的引导下逐步完成性质的证明,使学生加深了对辅助线的理解,培养学生完整的推理证明能力。学生积极参与,各抒己见。培养学生的合作意识,以及观察
7、、思考、分析问题的能力.【活动四】应用新知,体验成功例1.如图,在ABC中,AB=AC,点D在AC上,且BD=BC=AD,求ABC各角的度数.在老师的引导下小组讨论,交流,并将解题过程写在小黑板上。师生共同批改各小组的解题过程,之后老师在黑板上展示正确的解题过程。设计意图:培养学生正确运用所学知识的应用能力.并能综合运用所学知识解决问题.对性质1、2进行稳固运用,渗透方程思想、分类思想等数学思想方法,提高学生运用所学知识解决问题的能力。三跟踪训练,学以致用导学单学生独立思考并答复设计意图:对本节课的教学效果进行检测,激发学生主动参与的意识,为每一位学生创造在数学学习活动中获得成功的体验时机,并为不同程度的学生提供充分展示自己的时机。四课堂小结通过本节课的学习,谈谈自己的收获!教师重点关注:归纳、总结能力;不同层次的学生对本节知识的认识程度;辅助线的添加方法。设计意图:学会总结、反思五作业安排:课本第81页习题第1题板书设计:等腰三角形性质1:等边对等角例1:性质2:三线合一教学反思:在本节教学中,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生参观稻田课程设计
- 阀盖夹具设计课程设计
- 阀体加工工艺课程设计
- 锻造法兰课程设计
- 2024年中国光触媒型空气净化器市场调查研究报告
- 2024年中国PU女单鞋市场调查研究报告
- 名画背后的故事课程设计
- 外观设计课程设计
- 塑件模具课程设计(pp材质)
- 钢结构t型课程设计
- 2024年肠道传染病培训课件:疾病预防新视角
- 2024年度拼多多店铺托管经营合同2篇
- 2023年北京肿瘤医院(含社会人员)招聘笔试真题
- 2024年化学检验员(中级工)技能鉴定考试题库(附答案)
- 旅行社分店加盟协议书(2篇)
- 勘察工作质量及保证措施
- 城镇燃气经营安全重大隐患判定及燃气安全管理专题培训
- 个人和企业间资金拆借合同
- 重大火灾隐患判定方法
- 2024年除雪服务定制协议样本版
- 七年级地理上册 3.2海陆变迁说课稿 (新版)商务星球版
评论
0/150
提交评论