版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目
2、要求的。1若实数满足不等式组则的最小值等于( )ABCD2已知双曲线与双曲线没有公共点,则双曲线的离心率的取值范围是( )ABCD3函数f(x)=lnABCD4已知复数z=2i1-i,则A第一象限B第二象限C第三象限D第四象限5中国古代数学著作孙子算经中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”人们把此类题目称为“中国剩余定理”,若正整数除以正整数后的余数为,则记为,例如现将该问题以程序框图的算法给出,执行该程序框图,则输出的等于( )ABCD6设M是边BC上任意一点,N为AM的中点,若,则的值为( )A1BCD7设a,b(0,1)(1,+),则a=b是log
3、A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8世纪产生了著名的“”猜想:任给一个正整数,如果是偶数,就将它减半;如果是奇数,则将它乘加,不断重复这样的运算,经过有限步后,一定可以得到.如图是验证“”猜想的一个程序框图,若输入正整数的值为,则输出的的值是( )ABCD9若直线的倾斜角为,则的值为( )ABCD10已知为一条直线,为两个不同的平面,则下列说法正确的是( )A若,则B若,则C若,则D若,则11是定义在上的增函数,且满足:的导函数存在,且,则下列不等式成立的是( )ABCD12已知集合,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13若双曲线C:
4、(,)的顶点到渐近线的距离为,则的最小值_.14(5分)国家禁毒办于2019年11月5日至12月15日在全国青少年毒品预防教育数字化网络平台上开展2019年全国青少年禁毒知识答题活动,活动期间进入答题专区,点击“开始答题”按钮后,系统自动生成20道题.已知某校高二年级有甲、乙、丙、丁、戊五位同学在这次活动中答对的题数分别是,则这五位同学答对题数的方差是_15函数在内有两个零点,则实数的取值范围是_.16已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17
5、(12分)如图,已知三棱柱中,与是全等的等边三角形.(1)求证:;(2)若,求二面角的余弦值18(12分)已知直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)设点,直线与曲线交于两点,求的值.19(12分)已知函数.(1)若,求证:.(2)讨论函数的极值;(3)是否存在实数,使得不等式在上恒成立?若存在,求出的最小值;若不存在,请说明理由.20(12分)已知,均为给定的大于1的自然数,设集合,()当,时,用列举法表示集合;()当时,且集合满足下列条件:对任意,;证明:()若,则
6、(集合为集合在集合中的补集);()为一个定值(不必求出此定值);()设,其中,若,则21(12分)已知函数.(1)解不等式;(2)记函数的最小值为,正实数、满足,求证:.22(10分)已知函数(1)若,求函数的单调区间;(2)若恒成立,求实数的取值范围参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1A【解析】首先画出可行域,利用目标函数的几何意义求的最小值【详解】解:作出实数,满足不等式组表示的平面区域(如图示:阴影部分)由得,由得,平移,易知过点时直线在上截距最小,所以故选:A【点睛】本题考查了简单线性规划问题,求目标函数的最值
7、先画出可行域,利用几何意义求值,属于中档题2C【解析】先求得的渐近线方程,根据没有公共点,判断出渐近线斜率的取值范围,由此求得离心率的取值范围.【详解】双曲线的渐近线方程为,由于双曲线与双曲线没有公共点,所以双曲线的渐近线的斜率,所以双曲线的离心率.故选:C【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的取值范围的求法,属于基础题.3C【解析】因为fx=lnx2-4x+4x-23=4C【解析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C
8、点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力5C【解析】从21开始,输出的数是除以3余2,除以5余3,满足条件的是23,故选C.6B【解析】设,通过,再利用向量的加减运算可得,结合条件即可得解.【详解】设,则有.又,所以,有.故选B.【点睛】本题考查了向量共线及向量运算知识,利用向量共线及向量运算知识,用基底向量向量来表示所求向量,利用平面向量表示法唯一来解决问题.7A【解析】根据题意得到充分性,验证a=2,b=1【详解】a,b0,11,+,当a=b当logab=log故选:A.【点睛】本题考查了充分不必要条件,意在考查
9、学生的计算能力和推断能力.8C【解析】列出循环的每一步,可得出输出的的值.【详解】,输入,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数不成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,不成立,是偶数成立,则;,成立,跳出循环,输出的值为.故选:C.【点睛】本题考查利用程序框图计算输出结果,考查计算能力,属于基础题.9B【解析】根据题意可得:,所求式子利用二倍角的正弦函数公式化简,再利用同角三角函数间的基本关系弦化切后,将代入计算即可求出值【详解】由于直线的倾斜角为,所以,则故答案选B【点睛】本题考查二倍角
10、的正弦函数公式,同角三角函数间的基本关系,以及直线倾斜角与斜率之间的关系,熟练掌握公式是解本题的关键10D【解析】A. 若,则或,故A错误;B. 若,则或故B错误;C. 若,则或,或与相交;D. 若,则,正确.故选D.11D【解析】根据是定义在上的增函数及有意义可得,构建新函数,利用导数可得为上的增函数,从而可得正确的选项.【详解】因为是定义在上的增函数,故.又有意义,故,故,所以.令,则,故在上为增函数,所以即,整理得到.故选:D.【点睛】本题考查导数在函数单调性中的应用,一般地,数的大小比较,可根据数的特点和题设中给出的原函数与导数的关系构建新函数,本题属于中档题.12D【解析】根据集合的
11、基本运算即可求解.【详解】解:,则故选:D.【点睛】本题主要考查集合的基本运算,属于基础题二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据双曲线的方程求出其中一条渐近线,顶点,再利用点到直线的距离公式可得,由,利用基本不等式即可求解.【详解】由双曲线C:(,可得一条渐近线,一个顶点,所以,解得,则,当且仅当时,取等号,所以的最小值为.故答案为:【点睛】本题考查了双曲线的几何性质、点到直线的距离公式、基本不等式求最值,注意验证等号成立的条件,属于基础题.142【解析】由这五位同学答对的题数分别是,得该组数据的平均数,则方差15【解析】设,设,函数为奇函数,函数单调递增,画出简图,
12、如图所示,根据,解得答案.【详解】,设,则.原函数等价于函数,即有两个解.设,则,函数为奇函数.,函数单调递增,.当时,易知不成立;当时,根据对称性,考虑时的情况,画出简图,如图所示,根据图像知:故,即,根据对称性知:.故答案为:.【点睛】本题考查了函数零点问题,意在考查学生的转化能力和计算能力,画出图像是解题的关键.1660【解析】根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定
13、理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)证明见解析;(2)【解析】(1)取BC的中点O,则,由是等边三角形,得,从而得到平面,由此能证明(2)以,所在直线分别为x,y,z轴建立空间直角坐标系,利用向量法求得二面角的余弦值,得到结果.【详解】(1)取BC的中点O,连接,由于与是等边三角形,所以有,且,所以平
14、面,平面,所以(2)设,是全等的等边三角形,所以,又,由余弦定理可得,在中,有,所以以,所在直线分别为x,y,z轴建立空间直角坐标系,如图所示,则,设平面的一个法向量为,则,令,则,又平面的一个法向量为,所以二面角的余弦值为,即二面角的余弦值为【点睛】该题考查的是有关立体几何的问题,涉及到的知识点有利用线面垂直证明线性垂直,利用向量法求二面角的余弦值,属于中档题目.18(1);(2)【解析】(1)直接利用转换关系的应用,把参数方程极坐标方程和直角坐标方程之间进行转换.(2)利用(1)的结论,进一步利用一元二次方程根和系数的关系式的应用求出结果.【详解】解:(1)直线的参数方程为(为参数),转换
15、为直角坐标方程为.曲线的极坐标方程为.转换为,转换为直角坐标方程为.(2)直线的参数方程为(为参数),转换为标准式为(为参数),代入圆的直角坐标方程整理得,所以,.【点睛】本题属于基础本题考查的知识要点:主要考查极坐标,参数方程与普通方程互化,及求三角形面积需要熟记极坐标系与参数方程的公式,及与解析几何相关的直线与曲线位置关系的一些解题思路19(1)证明见解析;(2)见解析;(3)存在,1.【解析】(1),求出单调区间,进而求出,即可证明结论;(2)对(或)是否恒成立分类讨论,若恒成立,没有极值点,若不恒成立,求出的解,即可求出结论;(3)令,可证恒成立,而,由(2)得,在为减函数,在上单调递
16、减,在都存在,不满足,当时,设,且,只需求出在单调递增时的取值范围即可.【详解】(1),当时,当时,故.(2)由题知,当时,所以在上单调递减,没有极值;当时,得,当时,;当时,所以在上单调递减,在上单调递增.故在处取得极小值,无极大值.(3)不妨令,设在恒成立,在单调递增,在恒成立,所以,当时,由(2)知,当时,在上单调递减,恒成立;所以不等式在上恒成立,只能.当时,由(1)知在上单调递减,所以,不满足题意.当时,设,因为,所以,即,所以在上单调递增,又,所以时,恒成立,即恒成立,故存在,使得不等式在上恒成立,此时的最小值是1.【点睛】本题考查导数综合应用,涉及到函数的单调性、极值最值、不等式
17、证明,考查分类讨论思想,意在考查直观想象、逻辑推理、数学计算能力,属于较难题.20();()()详见解析()详见解析.()详见解析.【解析】()当,时,即可得出()(i)当时,2,3,又,必然有,否则得出矛盾(ii)由可得又,即可得出为定值(iii)由设,其中,2,可得,通过求和即可证明结论【详解】()解:当,时,()证明:(i)当时,2,3,又,必然有,否则,而,与已知对任意,矛盾因此有(ii),为定值(iii)由设,其中,2,【点睛】本题主要考查等差数列与等比数列的通项公式求和公式,考查了推理能力与计算能力,属于难题21(1);(2)见解析.【解析】(1)分、三种情况解不等式,综合可得出原
18、不等式的的解集;(2)利用绝对值三角不等式可求得函数的最小值为,进而可得出,再将代数式与相乘,利用基本不等式求得的最小值,进而可证得结论成立.【详解】(1)当时,由,得,即,解得,此时;当时,由,得,即,解得,此时;当时,由,得,即,解得,此时.综上所述,不等式的解集为;(2),当且仅当时取等号,所以,.所以,当且仅当,即,时等号成立,所以.所以,即.【点睛】本题考查含绝对值不等式的求解,同时也考查了利用基本不等式证明不等式成立,涉及绝对值三角不等式的应用,考查运算求解能力,属于中等题.22(1)增区间为,减区间为;(2).【解析】(1)将代入函数的解析式,利用导数可得出函数的单调区间;(2)求函数的导数,分类讨论的范围,利用导数分析函数的单调性,求出函数的最值可判断是否恒成立,可得实数的取值范围【详解】(1)当时,则,当时,则,此时,函数为减函数;当时,则,此时,函数为增函数.所以,函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度厂房装修工程设计与施工监理合同4篇
- 2025年度厂房租赁安全协议书(智能管理系统适用)4篇
- 2024版货品物流服务协议
- 2025年度新型建材2024grc线条装饰线条供应协议3篇
- 工程建设国家标准《大体积混凝土温度测控技术规范》条文说明
- 2025年度人工智能教育平台开发与应用合同9篇
- 专属2024财务代表协议条款版B版
- 个人房产抵押借款协议标准格式版
- 2024虚拟现实产品开发与销售合同
- 2024版单身公寓租赁合同附图书阅览室使用协议3篇
- 保洁服务岗位检查考核评分标准
- 称量与天平培训试题及答案
- 超全的超滤与纳滤概述、基本理论和应用
- 2020年医师定期考核试题与答案(公卫专业)
- 2022年中国育龄女性生殖健康研究报告
- 各种静脉置管固定方法
- 消防报审验收程序及表格
- 教育金规划ppt课件
- 呼吸机波形分析及临床应用
- 常用紧固件选用指南
- 私人借款协议书新编整理版示范文本
评论
0/150
提交评论