




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设,分别是椭圆的左、右焦点,过的直线交椭圆于,两点,且,则椭圆的离心率为( )ABCD2已知双曲线的一条渐近线为,圆与相切于点,若的面积为,则双曲线的离心率为( )ABCD
2、3德国数学家莱布尼兹(1646年-1716年)于1674年得到了第一个关于的级数展开式,该公式于明朝初年传入我国.在我国科技水平业已落后的情况下,我国数学家天文学家明安图(1692年-1765年)为提高我国的数学研究水平,从乾隆初年(1736年)开始,历时近30年,证明了包括这个公式在内的三个公式,同时求得了展开三角函数和反三角函数的6个新级数公式,著有割圆密率捷法一书,为我国用级数计算开创了先河.如图所示的程序框图可以用莱布尼兹“关于的级数展开式”计算的近似值(其中P表示的近似值),若输入,则输出的结果是( )ABCD4在平面直角坐标系中,若不等式组所表示的平面区域内存在点,使不等式成立,则
3、实数的取值范围为( )ABCD5已知双曲线的右焦点为,过的直线交双曲线的渐近线于两点,且直线的倾斜角是渐近线倾斜角的2倍,若,则该双曲线的离心率为( )ABCD6在区间上随机取一个实数,使直线与圆相交的概率为( )ABCD7已知双曲线(,),以点()为圆心,为半径作圆,圆与双曲线的一条渐近线交于,两点,若,则的离心率为()ABCD8已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为( )ABCD9复数满足,则复数在复平面内所对应的点在( )A第一象限B第二象限C第三象限D第四象限10函数的图象与轴交点的横坐标构成一个公差为的等差数列,要得到函数的图象,只需将的图象( )
4、A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位11等腰直角三角形的斜边AB为正四面体侧棱,直角边AE绕斜边AB旋转,则在旋转的过程中,有下列说法:(1)四面体EBCD的体积有最大值和最小值;(2)存在某个位置,使得;(3)设二面角的平面角为,则;(4)AE的中点M与AB的中点N连线交平面BCD于点P,则点P的轨迹为椭圆.其中,正确说法的个数是( )A1B2C3D412抛物线的准线方程是,则实数( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13的展开式中的常数项为_.14九章算术是中国古代的数学名著,其中方田一章给出了弧田面积的计算公式如图所示,弧田是由圆弧AB
5、和其所对弦AB围成的图形,若弧田的弧AB长为4,弧所在的圆的半径为6,则弧田的弦AB长是_,弧田的面积是_15已知双曲线()的左右焦点分别为,为坐标原点,点为双曲线右支上一点,若,则双曲线的离心率的取值范围为_.16设、是表面积为的球的球面上五点,四边形为正方形,则四棱锥体积的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知在平面直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴且取相同的单位长度建立极坐标系,直线的极坐标方程为.(1)求直线的直角坐标方程;(2)求曲线上的点到直线距离的最小值和最大值.18(12分)已知动
6、圆恒过点,且与直线相切.(1)求圆心的轨迹的方程;(2)设是轨迹上横坐标为2的点,的平行线交轨迹于,两点,交轨迹在处的切线于点,问:是否存在实常数使,若存在,求出的值;若不存在,说明理由.19(12分)某精密仪器生产车间每天生产个零件,质检员小张每天都会随机地从中抽取50个零件进行检查是否合格,若较多零件不合格,则需对其余所有零件进行检查根据多年的生产数据和经验,这些零件的长度服从正态分布(单位:微米),且相互独立若零件的长度满足,则认为该零件是合格的,否则该零件不合格(1)假设某一天小张抽查出不合格的零件数为,求及的数学期望;(2)小张某天恰好从50个零件中检查出2个不合格的零件,若以此频率
7、作为当天生产零件的不合格率已知检查一个零件的成本为10元,而每个不合格零件流入市场带来的损失为260元假设充分大,为了使损失尽量小,小张是否需要检查其余所有零件,试说明理由附:若随机变量服从正态分布,则20(12分)某工厂生产一种产品的标准长度为,只要误差的绝对值不超过就认为合格,工厂质检部抽检了某批次产品1000件,检测其长度,绘制条形统计图如图:(1)估计该批次产品长度误差绝对值的数学期望;(2)如果视该批次产品样本的频率为总体的概率,要求从工厂生产的产品中随机抽取2件,假设其中至少有1件是标准长度产品的概率不小于0.8时,该设备符合生产要求.现有设备是否符合此要求?若不符合此要求,求出符
8、合要求时,生产一件产品为标准长度的概率的最小值.21(12分)如图,在四棱锥中,平面, 底面是矩形,分别是,的中点.()求证:平面;()设, 求三棱锥的体积.22(10分)已知抛物线的焦点为,直线交于两点(异于坐标原点O).(1)若直线过点,,求的方程;(2)当时,判断直线是否过定点,若过定点,求出定点坐标;若不过定点,说明理由.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据表示出线段长度,由勾股定理,解出每条线段的长度,再由勾股定理构造出关系,求出离心率.【详解】设,则由椭圆的定义,可以得到,在中,有,解得在中,
9、有整理得,故选C项.【点睛】本题考查几何法求椭圆离心率,是求椭圆离心率的一个常用方法,通过几何关系,构造出关系,得到离心率.属于中档题.2D【解析】由圆与相切可知,圆心到的距离为2,即.又,由此求出的值,利用离心率公式,求出e.【详解】由题意得,.故选:D.【点睛】本题考查了双曲线的几何性质,直线与圆相切的性质,离心率的求法,属于中档题.3B【解析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的
10、计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.4B【解析】依据线性约束条件画出可行域,目标函数恒过,再分别讨论的正负进一步确定目标函数与可行域的基本关系,即可求解【详解】作出不等式对应的平面区域,如图所示:其中,直线过定点,当时,不等式表示直线及其左边的区域,不满足题意;当时,直线的斜率,不等式表示直线下方的区域,不满足题意;当时,直线的斜率,不等式表示直线上方的区域,要使不等式组所表示的平面区域内存在点,使不等式成立,只需直线的斜率,解得.综上可得实数的取值范围为,故选:B.【点睛】本题考查由目标函数有解求解参数
11、取值范围问题,分类讨论与数形结合思想,属于中档题5B【解析】先求出直线l的方程为y(xc),与yx联立,可得A,B的纵坐标,利用,求出a,b的关系,即可求出该双曲线的离心率【详解】双曲线1(ab0)的渐近线方程为yx,直线l的倾斜角是渐近线OA倾斜角的2倍,kl,直线l的方程为y(xc),与yx联立,可得y或y,2,ab,c2b,e故选B【点睛】本题考查双曲线的简单性质,考查向量知识,考查学生的计算能力,属于中档题6D【解析】利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概
12、型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.7A【解析】求出双曲线的一条渐近线方程,利用圆与双曲线的一条渐近线交于两点,且,则可根据圆心到渐近线距离为列出方程,求解离心率【详解】不妨设双曲线的一条渐近线与圆交于,因为,所以圆心到的距离为:,即,因为,所以解得故选A【点睛】本题考查双曲线的简单性质的应用,考查了转化思想以及计算能力,属于中档题对于离心率求解问题,关键是建立关于的齐次方程,主要有两个思考方向,一方面,可以从几何的角度,结合曲线的几何性质以及题目中的几何关系建立方程;另一方面,可以从代数的角度,结合曲线方程的性质以及题目中的代数的关系建立方程.8A【解
13、析】先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.9B【解析】设,则,可得,即可得到,进而找到对应的点所在象限.【详解】设,则,所以复数在复平面内所对应的点为,在第二象限.故选:B【点睛】本题考查复数在复平面内对应的点所在象限,考查复
14、数的模,考查运算能力.10A【解析】依题意有的周期为.而,故应左移.11C【解析】解:对于(1),当CD平面ABE,且E在AB的右上方时,E到平面BCD的距离最大,当CD平面ABE,且E在AB的左下方时,E到平面BCD的距离最小,四面体EBCD的体积有最大值和最小值,故(1)正确;对于(2),连接DE,若存在某个位置,使得AEBD,又AEBE,则AE平面BDE,可得AEDE,进一步可得AEDE,此时EABD为正三棱锥,故(2)正确;对于(3),取AB中点O,连接DO,EO,则DOE为二面角DABE的平面角,为,直角边AE绕斜边AB旋转,则在旋转的过程中,0,),DAE,),所以DAE不成立(3
15、)不正确;对于(4)AE的中点M与AB的中点N连线交平面BCD于点P,P到BC的距离为:dPBC,因为1,所以点P的轨迹为椭圆(4)正确故选:C点睛:该题考查的是有关多面体和旋转体对应的特征,以几何体为载体,考查相关的空间关系,在解题的过程中,需要认真分析,得到结果,注意对知识点的灵活运用.12C【解析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可.【详解】因为准线方程为,所以抛物线方程为,所以,即.故选:C【点睛】本题考查抛物线与准线的方程.属于基础题.二、填空题:本题共4小题,每小题5分,共20分。1331【解析】由二项式定理及其展开式得通项公式得:因为的展开式得通项为,则的展开
16、式中的常数项为: ,得解.【详解】解:,则的展开式中的常数项为:.故答案为:31.【点睛】本题考查二项式定理及其展开式的通项公式,求某项的导数,考查计算能力.146 129 【解析】过作,交于,先求得圆心角的弧度数,然后解解三角形求得的长.利用扇形面积减去三角形的面积,求得弧田的面积.【详解】如图,弧田的弧AB长为4,弧所在的圆的半径为6,过作,交于,根据圆的几何性质可知,垂直平分.AOB,可得AOD,OA6,AB2AD2OAsin26,弧田的面积SS扇形OABSOAB46129故答案为:6,129【点睛】本小题主要考查弓形弦长和弓形面积的计算,考查中国古代数学文化,属于中档题.15【解析】法
17、一:根据直角三角形的性质和勾股定理得,,又由双曲线的定义得,将离心率表示成关于的式子,再令,则,令对函数求导研究函数在上单调性,可求得离心率的范围.法二:令,根据直角三角形的性质和勾股定理得,将离心率表示成关于角的三角函数,根据三角函数的恒等变化转化为关于的函数,可求得离心率的范围.【详解】法一:,,,,设,则,令,所以时,在上单调递增, ,.法二:,令,.故答案为:.【点睛】本题考查求双曲线的离心率的范围的问题,关键在于将已知条件转化为与双曲线的有关,从而将离心率表示关于某个量的函数,属于中档题.16【解析】根据球的表面积求得球的半径,设球心到四棱锥底面的距离为,求得四棱锥的表达式,利用基本
18、不等式求得体积的最大值.【详解】由已知可得球的半径,设球心到四棱锥底面的距离为,棱锥的高为,底面边长为,的体积,当且仅当时等号成立.故答案为:【点睛】本小题主要考查球的表面积有关计算,考查球的内接四棱锥体积的最值的求法,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)最大值;最小值.【解析】(1)结合极坐标和直角坐标的互化公式可得;(2)利用参数方程,求解点到直线的距离公式,结合三角函数知识求解最值.【详解】解:(1)因为,代入,可得直线的直角坐标方程为.(2)曲线上的点到直线的距离,其中,.故曲线上的点到直线距离的最大值,曲线上的点到直线的距离的最小
19、值.【点睛】本题主要考查极坐标和直角坐标的转化及最值问题,椭圆上的点到直线的距离的最值求解优先考虑参数方法,侧重考查数学运算的核心素养.18(1);(2)存在,.【解析】(1)根据抛物线的定义,容易知其轨迹为抛物线;结合已知点的坐标,即可求得方程;(2)由抛物线方程求得点的坐标,设出直线的方程,利用导数求得点的坐标,联立直线的方程和抛物线方程,结合韦达定理,求得,进而求得与之间的大小关系,即可求得参数.【详解】(1)由题意得,点与点的距离始终等于点到直线的距离,由抛物线的定义知圆心的轨迹是以点为焦点,直线为准线的抛物线,则,.圆心的轨迹方程为.(2)因为是轨迹上横坐标为2的点,由(1)不妨取,
20、所以直线的斜率为1.因为,所以设直线的方程为,.由,得,则在点处的切线斜率为2,所以在点处的切线方程为.由得所以,所以.由消去得,由,得且.设,则,.因为点,在直线上,所以,所以,所以.故存在,使得.【点睛】本题考查抛物线轨迹方程的求解,以及抛物线中定值问题的求解,涉及导数的几何意义,属综合性中档题.19(1)见解析(2)需要,见解析【解析】(1)由零件的长度服从正态分布且相互独立,零件的长度满足即为合格,则每一个零件的长度合格的概率为,满足二项分布,利用补集的思想求得,再根据公式求得;(2)由题可得不合格率为,检查的成本为,求出不检查时损失的期望,与成本作差,再与0比较大小即可判断.【详解】
21、(1),由于满足二项分布,故.(2)由题意可知不合格率为,若不检查,损失的期望为;若检查,成本为,由于,当充分大时,所以为了使损失尽量小,小张需要检查其余所有零件.【点睛】本题考查正态分布的应用,考查二项分布的期望,考查补集思想的应用,考查分析能力与数据处理能力.20(1)(2)【解析】(1)根据题意即可写出该批次产品长度误差的绝对值的频率分布列,再根据期望公式即可求出;(2)由(1)可知,任取一件产品是标准长度的概率为0.4,即可求出随机抽取2件产品,都不是标准长度产品的概率,由对立事件的概率公式即可得到随机抽取2件产品,至少有1件是标准长度产品的概率,判断其是否符合生产要求;当不符合要求时,设生产一件产品为标准长度的概率为,可根据上述方法求出,解,即可得出
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 空调制冷剂的选择与应用考核试卷
- 花画工艺品的旅游纪念品开发考核试卷
- 陶瓷企业的品牌形象塑造与社会责任考核试卷
- 金融行业利率市场化与汇率形成考核试卷
- 麻醉药的选择
- 损伤控制外科
- 呼吸系统疾病病情观察
- 呼吸功能衰竭病症概述
- 外科值班处理规范与流程
- SDH-IN-24-生命科学试剂-MCE
- 中医师承跟师月记1000字
- 香格里拉酒店
- 民用飞机中国市场预测年报2024-2043(中英文版)-中国航空工业集团
- 不定型耐火材料浇注施工工艺
- 第47届世界技能大赛江苏省选拔赛油漆与装饰项目技术工作文件
- 4.1被动运输课件高一上学期生物人教版必修1
- 《基于PLC智能照明控制系统设计》开题报告2000字
- 《起重机械安全技术规程(第1号修改单)》
- 食品安全追溯管理制度范文
- 某年县区首届“百姓大舞台”活动方案
- 起重设备定期检查维护制度
评论
0/150
提交评论