版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知等差数列的前项和为,且,则( )A45B42C25D362已知等差数列满足,公差,且成等比数列,则A1B2C3D43如图所示的程序框图,若输入,则输出的结果是( )ABCD4在中,若,则实数( )ABCD5如图,将两个全等等腰直角三角形拼成一个平行四边形,将平行四边形沿对角线折起,使平面平面,则直线与所成角余弦值为( )ABCD6如图,已知三棱锥中,平面平面,记二面角的平面角为,直线与平面所成角为,直线与平面所成角为,则( )ABCD7某工厂一年中各月份的收入、支出情况的统计如
3、图所示,下列说法中错误的是( )A收入最高值与收入最低值的比是B结余最高的月份是月份C与月份的收入的变化率与至月份的收入的变化率相同D前个月的平均收入为万元8已知集合,则( )ABCD9若复数(为虚数单位)的实部与虚部相等,则的值为( )ABCD10如果,那么下列不等式成立的是( )ABCD11记个两两无交集的区间的并集为阶区间如为2阶区间,设函数,则不等式的解集为( )A2阶区间B3阶区间C4阶区间D5阶区间12把函数的图象向右平移个单位长度,得到函数的图象,若函数是偶函数,则实数的最小值是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13从甲、乙、丙、丁、戊五人中任选两名代
4、表,甲被选中的概率为_.14已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为_.15若向量与向量垂直,则_.16函数的定义域为,其图象如图所示函数是定义域为的奇函数,满足,且当时,给出下列三个结论: ;函数在内有且仅有个零点;不等式的解集为其中,正确结论的序号是_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知等比数列中,是和的等差中项(1)求数列的通项公式;(2)记,求数列的前项和.18(12分)随着小汽车的普及,“驾驶证”已经成为现代人“必考”的证件之一.若某人报名参加了驾驶证考试,要顺利地拿到驾驶证,他需要通过四
5、个科目的考试,其中科目二为场地考试.在一次报名中,每个学员有5次参加科目二考试的机会(这5次考试机会中任何一次通过考试,就算顺利通过,即进入下一科目考试;若5次都没有通过,则需重新报名),其中前2次参加科目二考试免费,若前2次都没有通过,则以后每次参加科目二考试都需要交200元的补考费.某驾校对以往2000个学员第1次参加科目二考试进行了统计,得到下表:考试情况男学员女学员第1次考科目二人数1200800第1次通过科目二人数960600第1次未通过科目二人数240200若以上表得到的男、女学员第1次通过科目二考试的频率分别作为此驾校男、女学员每次通过科目二考试的概率,且每人每次是否通过科目二考
6、试相互独立.现有一对夫妻同时在此驾校报名参加了驾驶证考试,在本次报名中,若这对夫妻参加科目二考试的原则为:通过科目二考试或者用完所有机会为止.(1)求这对夫妻在本次报名中参加科目二考试都不需要交补考费的概率;(2)若这对夫妻前2次参加科目二考试均没有通过,记这对夫妻在本次报名中参加科目二考试产生的补考费用之和为元,求的分布列与数学期望.19(12分)以平面直角坐标系的原点为极点,轴的正半轴为极轴,且在两种坐标系中取相同的长度单位,建立极坐标系,已知曲线,曲线(为参数),求曲线交点的直角坐标.20(12分)在直角坐标系中,圆C的参数方程(为参数),以O为极点,x轴的非负半轴为极轴建立极坐标系.(
7、1)求圆C的极坐标方程;(2)直线l的极坐标方程是,射线与圆C的交点为O、P,与直线l的交点为Q,求线段的长. 21(12分)在ABC中,角A,B,C的对边分别为a,b,c,已知a=4,.(1)求A的余弦值;(2)求ABC面积的最大值22(10分)如图,在四棱锥中,底面,底面是直角梯形,为侧棱上一点,已知.()证明:平面平面;()求二面角的余弦值.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】由等差数列的性质可知,进而代入等差数列的前项和的公式即可.【详解】由题,.故选:D【点睛】本题考查等差数列的性质,考查等差数列的
8、前项和.2D【解析】先用公差表示出,结合等比数列求出.【详解】,因为成等比数列,所以,解得.【点睛】本题主要考查等差数列的通项公式.属于简单题,化归基本量,寻求等量关系是求解的关键.3B【解析】列举出循环的每一步,可得出输出结果.【详解】,不成立,;不成立,;不成立,;成立,输出的值为.故选:B.【点睛】本题考查利用程序框图计算输出结果,一般要将算法的每一步列举出来,考查计算能力,属于基础题.4D【解析】将、用、表示,再代入中计算即可.【详解】由,知为的重心,所以,又,所以,所以,.故选:D【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算,是一道中档题.5C【解析】利用建系,假设长
9、度,表示向量与,利用向量的夹角公式,可得结果.【详解】由平面平面,平面平面,平面所以平面,又平面所以,又所以作轴/,建立空间直角坐标系如图设,所以则所以所以故选:C【点睛】本题考查异面直线所成成角的余弦值,一般采用这两种方法:(1)将两条异面直线作辅助线放到同一个平面,然后利用解三角形知识求解;(2)建系,利用空间向量,属基础题.6A【解析】作于,于,分析可得,再根据正弦的大小关系判断分析得,再根据线面角的最小性判定即可.【详解】作于,于.因为平面平面,平面.故,故平面.故二面角为.又直线与平面所成角为,因为,故.故,当且仅当重合时取等号.又直线与平面所成角为,且为直线与平面内的直线所成角,故
10、,当且仅当平面时取等号.故.故选:A【点睛】本题主要考查了线面角与线线角的大小判断,需要根据题意确定角度的正弦的关系,同时运用线面角的最小性进行判定.属于中档题.7D【解析】由图可知,收入最高值为万元,收入最低值为万元,其比是,故项正确;结余最高为月份,为,故项正确;至月份的收入的变化率为至月份的收入的变化率相同,故项正确;前个月的平均收入为万元,故项错误综上,故选8A【解析】考虑既属于又属于的集合,即得.【详解】.故选:【点睛】本题考查集合的交运算,属于基础题.9C【解析】利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,解得.故选:C【点睛】本题主要考查复数的除法运
11、算,复数的概念运用.10D【解析】利用函数的单调性、不等式的基本性质即可得出.【详解】,.故选:D.【点睛】本小题主要考查利用函数的单调性比较大小,考查不等式的性质,属于基础题.11D【解析】可判断函数为奇函数,先讨论当且时的导数情况,再画出函数大致图形,将所求区间端点值分别看作对应常函数,再由图形确定具体自变量范围即可求解【详解】当且时,.令得.可得和的变化情况如下表:令,则原不等式变为,由图像知的解集为,再次由图像得到的解集由5段分离的部分组成,所以解集为5阶区间. 故选:D【点睛】本题考查由函数的奇偶性,单调性求解对应自变量范围,导数法研究函数增减性,数形结合思想,转化与化归思想,属于难
12、题12A【解析】先求出的解析式,再求出的解析式,根据三角函数图象的对称性可求实数满足的等式,从而可求其最小值.【详解】的图象向右平移个单位长度,所得图象对应的函数解析式为,故.令,解得,.因为为偶函数,故直线为其图象的对称轴,令,故,因为,故,当时,.故选:A.【点睛】本题考查三角函数的图象变换以及三角函数的图象性质,注意平移变换是对自变量做加减,比如把的图象向右平移1个单位后,得到的图象对应的解析式为,另外,如果为正弦型函数图象的对称轴,则有,本题属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法,从甲、乙、丙、丁、戊五
13、人中任选两名共有种方法,根据公式即可求得概率.【详解】甲被选中,只需从乙、丙、丁、戊中,再选一人即有种方法, 从甲、乙、丙、丁、戊五人中任选两名共有种方法,.故答案为:.【点睛】本题考查古典概型的概率的计算,考查学生分析问题的能力,难度容易.14【解析】作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,则单调递增,当时,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,因为(2),故此时满足题意;或有2解同时有1解,
14、则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题150【解析】直接根据向量垂直计算得到答案.【详解】向量与向量垂直,则,故.故答案为:.【点睛】本题考查了根据向量垂直求参数,意在考查学生的计算能力.16【解析】利用奇函数和,得出函数的周期为,由图可直接判断;利用赋值法求得,结合,进而可判断函数在内的零点个数,可判断的正误
15、;采用换元法,结合图象即可得解,可判断的正误.综合可得出结论.【详解】因为函数是奇函数,所以,又,所以,即,所以,函数的周期为.对于,由于函数是上的奇函数,所以,故正确;对于,令,可得,得,所以,函数在区间上的零点为和.因为函数的周期为,所以函数在内有个零点,分别是、,故错误;对于,令,则需求的解集,由图象可知,所以,故正确.故答案为:.【点睛】本题考查函数的图象与性质,涉及奇偶性、周期性和零点等知识点,考查学生分析问题的能力和数形结合能力,属于中等题三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)用等比数列的首项和公比分别表示出已知条件,解方程组即
16、可求得公比,代入等比数列的通项公式即可求得结果;(2)把(1)中求得的结果代入bnanlog2an,求出bn,利用错位相减法求出Tn【详解】(1)设数列的公比为,由题意知:,即.,即.(2),.得.【点睛】本题考查等比数列的通项公式和等差中项的概念以及错位相减法求和,考查运算能力,属中档题18(1);(2)见解析.【解析】事件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中)(1)这对夫妻是否通过科目二考试相互独立,利用独立事件乘法公式即可求得;(2)补考费用之和为元可能取值为400,600,800,1000,1200,根据题意可求相应的概率,进而可求X的数学期望【详解】事
17、件表示男学员在第次考科目二通过,事件表示女学员在第次考科目二通过(其中).(1)事件表示这对夫妻考科目二都不需要交补考费.(2)的可能取值为400,600,800,1000,1200., , , ,.则的分布列为: 40060080010001200 故 (元).【点睛】本题以实际问题为素材,考查离散型随机变量的概率及期望,解题时要注意独立事件概率公式的灵活运用,属于基础题.19【解析】利用极坐标方程与普通方程、参数方程间的互化公式化简即可.【详解】因为,所以,所以曲线的直角坐标方程为.由,得,所以曲线的普通方程为.由,得,所以(舍),所以,所以曲线的交点坐标为.【点睛】本题考查极坐标方程与普
18、通方程,参数方程与普通方程间的互化,考查学生的计算能力,是一道容易题.20(1);(2)2【解析】(1)首先利用对圆C的参数方程(为参数)进行消参数运算,化为普通方程,再根据普通方程化极坐标方程的公式得到圆C的极坐标方程(2)设,联立直线与圆的极坐标方程,解得;设,联立直线与直线的极坐标方程,解得,可得【详解】(1)圆C的普通方程为,又,所以圆C的极坐标方程为.(2)设,则由解得,得;设,则由解得,得;所以【点睛】本题考查圆的参数方程与普通方程的互化,考查圆的极坐标方程,考查极坐标方程的求解运算,考查了学生的计算能力以及转化能力,属于基础题.21(1);(2)【解析】(1)根据正弦定理化简得到,故,得到答案.(2)计算,再利用面积公式计算得到答案.【详解】(1),则,即,故,故.(2),故,故.当时等号成立.,故,故ABC面积的最大值为.【点睛】本题考查了正弦定理,面积公式,均值不等式,意在考查学生的综合应用能力.22()证明见解析;().【解析】(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年晨诵活动实施方案
- 教师岗位变动实施方案
- 2023年四川省交通运输厅所属事业单位招聘工作人员笔试真题
- 医院紫外线灯使用管理制度
- 2023年江安县考调机关事业单位工作人员笔试真题
- 医院物业(后勤)中央运送中心员工规章制度
- 外出培训方案
- 婴幼儿营养与喂养指导课件
- 食品安全管理制度
- 案名征集方案
- 2024《整治形式主义为基层减负若干规定》全文课件
- 职能科室对医技科室医疗质量督查记录表(检验科、放射科、超声科、功能科、内镜室)
- 医院感染预防与控制标准规范知识考试题库500题(含答案)
- 2024年社区工作者考试必背1000题题库【含答案】
- 《电路分析基础》说课课件
- 20以内加减法口算题(10000道)(A4直接打印-每页100题)
- 【S】幼儿绘本故事《三只小猪》课件
- 后进生转化课件
- 水污染控制工程课程设计
- 道面强度计算方法
- 连续性内部资料出版物准印证申请表
评论
0/150
提交评论