2021-2022学年江苏省高邮高三第二次诊断性检测数学试卷含解析_第1页
2021-2022学年江苏省高邮高三第二次诊断性检测数学试卷含解析_第2页
2021-2022学年江苏省高邮高三第二次诊断性检测数学试卷含解析_第3页
2021-2022学年江苏省高邮高三第二次诊断性检测数学试卷含解析_第4页
2021-2022学年江苏省高邮高三第二次诊断性检测数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1设等比数列的前项和为,则“”是“”的( )A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件2在等差数列中,若(),则数列的最大值是( )ABC1D33已知数列 是公比为 的等比数列,且 , , 成等差数列,则公比 的值为(

2、 )ABC 或 D 或 4若复数满足,则的虚部为( )A5BCD-55记为等差数列的前项和.若,则( )A5B3C12D136直角坐标系中,双曲线()与抛物线相交于、两点,若是等边三角形,则该双曲线的离心率( )ABCD7在正方体中,球同时与以为公共顶点的三个面相切,球同时与以为公共顶点的三个面相切,且两球相切于点.若以为焦点,为准线的抛物线经过,设球的半径分别为,则( )ABCD8设为自然对数的底数,函数,若,则( )ABCD9若(是虚数单位),则的值为( )A3B5CD10在复平面内,复数(为虚数单位)的共轭复数对应的点位于( )A第一象限B第二象限C第三象限D第四象限11函数在上单调递增

3、,则实数的取值范围是( )ABCD12已知椭圆的焦点分别为,其中焦点与抛物线的焦点重合,且椭圆与抛物线的两个交点连线正好过点,则椭圆的离心率为( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知平面向量,满足|1,|2,的夹角等于,且()()0,则|的取值范围是_14已知定义在上的函数的图象关于点对称,若函数图象与函数图象的交点为,则_15四边形中,则的最小值是_.16函数的最大值与最小正周期相同,则在上的单调递增区间为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方

4、程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.18(12分)如图所示,直角梯形ABCD中,四边形EDCF为矩形,平面平面ABCD(1)求证:平面ABE;(2)求平面ABE与平面EFB所成锐二面角的余弦值(3)在线段DF上是否存在点P,使得直线BP与平面ABE所成角的正弦值为,若存在,求出线段BP的长,若不存在,请说明理由19(12分)已知函数.()求的值;()若,且,求的值.20(12分)在全面抗击新冠肺炎疫情这一特殊时期,我市教育局提出“停课不停学”的口号,鼓励学生线上学习.某校数学教师为了调查高三学生数学成绩与线上学习时间之间的相关关系,对高三年级随机选

5、取45名学生进行跟踪问卷,其中每周线上学习数学时间不少于5小时的有19人,余下的人中,在检测考试中数学平均成绩不足120分的占,统计成绩后得到如下列联表:分数不少于120分分数不足120分合计线上学习时间不少于5小时419线上学习时间不足5小时合计45(1)请完成上面列联表;并判断是否有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”;(2)按照分层抽样的方法,在上述样本中从分数不少于120分和分数不足120分的两组学生中抽取9名学生,设抽到不足120分且每周线上学习时间不足5小时的人数是,求的分布列(概率用组合数算式表示);若将频率视为概率,从全校高三该次检测数学成绩不少于120

6、分的学生中随机抽取20人,求这些人中每周线上学习时间不少于5小时的人数的期望和方差.(下面的临界值表供参考)0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828(参考公式其中)21(12分)如图,在直三棱柱中,为的中点,点在线段上,且平面(1)求证:;(2)求平面与平面所成二面角的正弦值22(10分)某企业生产一种产品,从流水线上随机抽取件产品,统计其质量指标值并绘制频率分布直方图(如图1):规定产品的质量指标值在的为劣质品,在的为优等品,在的为特优品,销售时劣质品每件亏损元,优等品每件盈利元,特优品每件盈利元,以这件产品的质量

7、指标值位于各区间的频率代替产品的质量指标值位于该区间的概率(1)求每件产品的平均销售利润;(2)该企业主管部门为了解企业年营销费用(单位:万元)对年销售量(单位:万件)的影响,对该企业近年的年营销费用和年销售量,数据做了初步处理,得到的散点图(如图2)及一些统计量的值表中,根据散点图判断,可以作为年销售量(万件)关于年营销费用(万元)的回归方程求关于的回归方程;用所求的回归方程估计该企业每年应投入多少营销费,才能使得该企业的年收益的预报值达到最大?(收益销售利润营销费用,取)附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为,参考答案一、选择题:本题共12小题,每小题5分,共60分。

8、在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】根据等比数列的前项和公式,判断出正确选项.【详解】由于数列是等比数列,所以,由于,所以,故“”是“”的充分必要条件.故选:C【点睛】本小题主要考查充分、必要条件的判断,考查等比数列前项和公式,属于基础题.2D【解析】在等差数列中,利用已知可求得通项公式,进而,借助函数的的单调性可知,当时, 取最大即可求得结果.【详解】因为,所以,即,又,所以公差,所以,即,因为函数,在时,单调递减,且;在时,单调递减,且.所以数列的最大值是,且,所以数列的最大值是3.故选:D.【点睛】本题考查等差数列的通项公式,考查数列与函数的关系,借助函数单调

9、性研究数列最值问题,难度较易.3D【解析】由成等差数列得,利用等比数列的通项公式展开即可得到公比q的方程.【详解】由题意,2aq2=aq+a,2q2=q+1,q=1或q= 故选:D【点睛】本题考查等差等比数列的综合,利用等差数列的性质建立方程求q是解题的关键,对于等比数列的通项公式也要熟练4C【解析】把已知等式变形,再由复数代数形式的乘除运算化简得答案【详解】由(1+i)z|3+4i|,得z,z的虚部为故选C【点睛】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题5B【解析】由题得,解得,计算可得.【详解】,解得,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查

10、了学生运算求解能力.6D【解析】根据题干得到点A坐标为,代入抛物线得到坐标为,再将点代入双曲线得到离心率.【详解】因为三角形OAB是等边三角形,设直线OA为,设点A坐标为,代入抛物线得到x=2b,故点A的坐标为,代入双曲线得到 故答案为:D.【点睛】求双曲线的离心率(或离心率的取值范围),常见有两种方法:求出,代入公式;只需要根据一个条件得到关于的齐次式,结合转化为的齐次式,然后等式(不等式)两边分别除以或转化为关于的方程(不等式),解方程(不等式)即可得 (的取值范围).7D【解析】由题先画出立体图,再画出平面处的截面图,由抛物线第一定义可知,点到点的距离即半径,也即点到面的距离,点到直线的

11、距离即点到面的距离因此球内切于正方体,设,两球球心和公切点都在体对角线上,通过几何关系可转化出,进而求解【详解】根据抛物线的定义,点到点的距离与到直线的距离相等,其中点到点的距离即半径,也即点到面的距离,点到直线的距离即点到面的距离,因此球内切于正方体,不妨设,两个球心和两球的切点均在体对角线上,两个球在平面处的截面如图所示,则,所以.又因为,因此,得,所以. 故选:D【点睛】本题考查立体图与平面图的转化,抛物线几何性质的使用,内切球的性质,数形结合思想,转化思想,直观想象与数学运算的核心素养8D【解析】利用与的关系,求得的值.【详解】依题意,所以故选:D【点睛】本小题主要考查函数值的计算,属

12、于基础题.9D【解析】直接利用复数的模的求法的运算法则求解即可.【详解】(是虚数单位)可得解得本题正确选项:【点睛】本题考查复数的模的运算法则的应用,复数的模的求法,考查计算能力.10D【解析】将复数化简得,即可得到对应的点为,即可得出结果.【详解】,对应的点位于第四象限.故选:.【点睛】本题考查复数的四则运算,考查共轭复数和复数与平面内点的对应,难度容易.11B【解析】对分类讨论,当,函数在单调递减,当,根据对勾函数的性质,求出单调递增区间,即可求解.【详解】当时,函数在上单调递减,所以,的递增区间是,所以,即.故选:B.【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基

13、础题.12B【解析】根据题意可得易知,且,解方程可得,再利用即可求解.【详解】易知,且故有,则故选:B【点睛】本题考查了椭圆的几何性质、抛物线的几何性质,考查了学生的计算能力,属于中档题二、填空题:本题共4小题,每小题5分,共20分。13【解析】计算得到|,|cos1,解得cos,根据三角函数的有界性计算范围得到答案.【详解】由()()0 可得 ()|cos12cos|cos1,为与的夹角再由 21+4+212cos7 可得|,|cos1,解得cos0,1cos1,1,即|+10,解得 |,故答案为【点睛】本题考查了向量模的范围,意在考查学生的计算能力,利用三角函数的有界性是解题的关键.144

14、038.【解析】由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解【详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【点睛】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题15【解析】在中利用正弦定理得出,进而可知,当时,取最小值,进而计算出结果.【详解】,如图,在中,由正弦定理可得,即,故当时,取到最小值为.故答案为:.【点睛】本题考查解三角形,同时也考查了常见的三角函数值,考查逻辑推理能力与计算能力,属于中档题16【解析】利用三角函数的辅助角公式进行化简,

15、求出函数的解析式,结合三角函数的单调性进行求解即可【详解】,则函数的最大值为2,周期,的最大值与最小正周期相同,得,则,当时,则当时,得,即函数在,上的单调递增区间为,故答案为:.【点睛】本题考查三角函数的性质、单调区间,利用辅助角公式求出函数的解析式是解决本题的关键,同时要注意单调区间为定义域的一个子区间三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)或【解析】(1)根据椭圆定义求得,得椭圆方程;(2)设,由得,应用韦达定理得,代入已知条件可得,再由椭圆中弦长公式求得弦长,原点到直线的距离,得三角形面积,从而可求得,得直线方程【详解】解:(1)据题意设椭圆的方程

16、为则椭圆的标准方程为.(2)据得设,则又原点到直线的距离解得或所求直线的方程为或【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题解题时采取设而不求思想,即设交点坐标为,直线方程与椭圆方程联立消元后应用韦达定理得,把这个结论代入题中条件求得参数,用它求弦长等等,从而解决问题18(I)见解析(II)(III)【解析】试题分析:()取为原点,所在直线为轴,所在直线为轴建立空间直角坐标系,由题意可得平面的法向量,且,据此有,则平面()由题意可得平面的法向量,结合()的结论可得,即平面与平面所成锐二面角的余弦值为()设,则,而平面的法向量,据此可得,解方程有或据此计算可得试题解析:()取为原点,所

17、在直线为轴,所在直线为轴建立空间直角坐标系,如图,则,设平面的法向量,不妨设,又,又平面,平面(),设平面的法向量,不妨设,平面与平面所成锐二面角的余弦值为()设 ,又平面的法向量,或当时,;当时,综上,19();().【解析】()直接代入再由诱导公式计算可得;()先得到,再根据利用两角差的余弦公式计算可得【详解】解:();()因为所以,由得,又因为,故,所以,所以.【点睛】本题考查了三角函数中的恒等变换应用,属于中档题20(1)填表见解析;有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”(2)详见解析期望;方差【解析】(1)完成列联表,代入数据即可判断;(2)利用分层抽样可得的

18、取值,进而得到概率,列出分布列;根据分析知,计算出期望与方差.【详解】(1)分数不少于120分分数不足120分合计线上学习时间不少于5小时15419线上学习时间不足5小时101626合计252045有99%的把握认为“高三学生的数学成绩与学生线上学习时间有关”.(2)由分层抽样知,需要从不足120分的学生中抽取人,的可能取值为0,1,2,3,4,所以,的分布列:从全校不少于120分的学生中随机抽取1人,此人每周上线时间不少于5小时的概率为,设从全校不少于120分的学生中随机抽取20人,这些人中每周线上学习时间不少于5小时的人数为,则,故,.【点睛】本题考查了独立性检验与离散型随机变量的分布列、数学期望与方差的计算问题,属于基础题.21见解析【解析】(1)如图,连接,交于点,连接,则为的中点,因为为的中点,所以,又,所以,从而,四点共面因为平面,平面,平面平面,所以又,所以四边形为平行四边形,所以,所以(2)因

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论