2021-2022学年山南市重点高三第二次调研数学试卷含解析_第1页
2021-2022学年山南市重点高三第二次调研数学试卷含解析_第2页
2021-2022学年山南市重点高三第二次调研数学试卷含解析_第3页
2021-2022学年山南市重点高三第二次调研数学试卷含解析_第4页
2021-2022学年山南市重点高三第二次调研数学试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知条件,条件直线与直线平行,则是的( )A充要条件B必要不充分条件C充分不必要条件D既不充分也不必要条件2记等差数列的公差为,前项和为.若,则( )ABCD3已知函数,.若存在,使得成立,则的最大值为( )ABCD4函数图象的大致形状是(

2、)ABCD5抛物线的准线与轴的交点为点,过点作直线与抛物线交于、两点,使得是的中点,则直线的斜率为( )ABC1D6已知椭圆的左、右焦点分别为、,过的直线交椭圆于A,B两点,交y轴于点M,若、M是线段AB的三等分点,则椭圆的离心率为( )ABCD7已知复数,(为虚数单位),若为纯虚数,则()AB2CD8抛物线的焦点为,点是上一点,则( )ABCD9设等差数列的前项和为,若,则( )A10B9C8D710已知且,函数,若,则( )A2BCD11设复数z,则|z|()AB CD12已知圆与抛物线的准线相切,则的值为()A1B2CD4二、填空题:本题共4小题,每小题5分,共20分。13如图所示的流程

3、图中,输出的值为_.14正四面体的一个顶点是圆柱上底面的圆心,另外三个顶点圆柱下底面的圆周上,记正四面体的体积为,圆柱的体积为,则的值是_.15已知随机变量服从正态分布,则_16对于任意的正数,不等式恒成立,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知函数,(1)求曲线在点处的切线方程;(2)求函数的极小值;(3)求函数的零点个数18(12分)已知,其中(1)当时,设函数,求函数的极值(2)若函数在区间上递增,求的取值范围;(3)证明:19(12分)设数列,的各项都是正数,为数列的前n项和,且对任意,都有,(e是自然对数的底数).(1)求数列

4、,的通项公式;(2)求数列的前n项和.20(12分)如图所示,四棱柱中,底面为梯形,.(1)求证:;(2)若平面平面,求二面角的余弦值.21(12分)如图所示,四棱锥PABCD中,PC底面ABCD,PCCD2,E为AB的中点,底面四边形ABCD满足ADCDCB90,AD1,BC1()求证:平面PDE平面PAC;()求直线PC与平面PDE所成角的正弦值;()求二面角DPEB的余弦值22(10分)设函数(1)若,求函数的值域;(2)设为的三个内角,若,求的值;参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】先根据直线与直线平

5、行确定的值,进而即可确定结果.【详解】因为直线与直线平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要条件.故选C【点睛】本题主要考查充分条件和必要条件的判定,熟记概念即可,属于基础题型.2C【解析】由,和,可求得,从而求得和,再验证选项.【详解】因为,所以解得,所以,所以,故选:C.【点睛】本题考查等差数列的通项公式、前项和公式,还考查运算求解能力,属于中档题.3C【解析】由题意可知,由可得出,利用导数可得出函数在区间上单调递增,函数在区间上单调递增,进而可得出,由此可得出,可得出,构造函数,利用导数求出函数在上的最大值即可得解.【详解】,由于,则,同理可知,函数的定义域为,

6、对恒成立,所以,函数在区间上单调递增,同理可知,函数在区间上单调递增,则,则,构造函数,其中,则.当时,此时函数单调递增;当时,此时函数单调递减.所以,.故选:C.【点睛】本题考查代数式最值的计算,涉及指对同构思想的应用,考查化归与转化思想的应用,有一定的难度.4B【解析】判断函数的奇偶性,可排除A、C,再判断函数在区间上函数值与的大小,即可得出答案.【详解】解:因为,所以,所以函数是奇函数,可排除A、C;又当,可排除D;故选:B.【点睛】本题考查函数表达式判断函数图像,属于中档题.5B【解析】设点、,设直线的方程为,由题意得出,将直线的方程与抛物线的方程联立,列出韦达定理,结合可求得的值,由

7、此可得出直线的斜率.【详解】由题意可知点,设点、,设直线的方程为,由于点是的中点,则,将直线的方程与抛物线的方程联立得,整理得,由韦达定理得,得,解得,因此,直线的斜率为.故选:B.【点睛】本题考查直线斜率的求解,考查直线与抛物线的综合问题,涉及韦达定理设而不求法的应用,考查运算求解能力,属于中等题.6D【解析】根据题意,求得的坐标,根据点在椭圆上,点的坐标满足椭圆方程,即可求得结果.【详解】由已知可知,点为中点,为中点,故可得,故可得;代入椭圆方程可得,解得,不妨取,故可得点的坐标为,则,易知点坐标,将点坐标代入椭圆方程得,所以离心率为,故选:D.【点睛】本题考查椭圆离心率的求解,难点在于根

8、据题意求得点的坐标,属中档题.7C【解析】把代入,利用复数代数形式的除法运算化简,由实部为0且虚部不为0求解即可【详解】,为纯虚数,解得故选C【点睛】本题考查复数代数形式的除法运算,考查复数的基本概念,是基础题8B【解析】根据抛物线定义得,即可解得结果.【详解】因为,所以.故选B【点睛】本题考查抛物线定义,考查基本分析求解能力,属基础题.9B【解析】根据题意,解得,得到答案.【详解】,解得,故.故选:.【点睛】本题考查了等差数列的求和,意在考查学生的计算能力.10C【解析】根据分段函数的解析式,知当时,且,由于,则,即可求出.【详解】由题意知:当时,且由于,则可知:,则,则,则.即.故选:C.

9、【点睛】本题考查分段函数的应用,由分段函数解析式求自变量.11D【解析】先用复数的除法运算将复数化简,然后用模长公式求模长.【详解】解:z,则|z|.故选:D.【点睛】本题考查复数的基本概念和基本运算,属于基础题.12B【解析】因为圆与抛物线的准线相切,则圆心为(3,0),半径为4,根据相切可知,圆心到直线的距离等于 半径,可知的值为2,选B.【详解】请在此输入详解!二、填空题:本题共4小题,每小题5分,共20分。134【解析】根据流程图依次运行直到,结束循环,输出n,得出结果.【详解】由题:,结束循环,输出.故答案为:4【点睛】此题考查根据程序框图运行结果求输出值,关键在于准确识别循环结构和

10、判断框语句.14【解析】设正四面体的棱长为,求出底面外接圆的半径与高,代入体积公式求解【详解】解:设正四面体的棱长为,则底面积为,底面外接圆的半径为,高为正四面体的体积,圆柱的体积则故答案为:【点睛】本题主要考查多面体与旋转体体积的求法,考查计算能力,属于中档题150.22.【解析】正态曲线关于x对称,根据对称性以及概率和为1求解即可。【详解】【点睛】本题考查正态分布曲线的特点及曲线所表示的意义,是一个基础题16【解析】根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【点

11、睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)极小值;(3)函数的零点个数为【解析】(1)求出和的值,利用点斜式可得出所求切线的方程;(2)利用导数分析函数的单调性,进而可得出该函数的极小值;(3)由当时,以及,结合函数在区间上的单调性可得出函数的零点个数.【详解】(1)因为,所以所以,所以曲线在点处的切线为;(2)因为,令,得或列表如下:0极大值极小值所以,函数的单调递增区间为和,单调递减区间为,所以,当时,函数有极小值;(3)当时,且由(2

12、)可知,函数在上单调递增,所以函数的零点个数为【点睛】本题考查利用导数求函数的切线方程、极值以及利用导数研究函数的零点问题,考查分析问题和解决问题的能力,属于中等题.18(1)极大值,无极小值;(2)(3)见解析【解析】(1)先求导,根据导数和函数极值的关系即可求出;(2)先求导,再函数在区间上递增,分离参数,构造函数,求出函数的最值,问题得以解决;(3)取得到,取,可得,累加和根据对数的运算性和放缩法即可证明.【详解】解:(1)当时,设函数,则令,解得当时,当时,所以在上单调递增,在上单调递减所以当时,函数取得极大值,即极大值为,无极小值;(2)因为,所以,因为在区间上递增,所以在上恒成立,

13、所以在区间上恒成立当时,在区间上恒成立,当时,设,则在区间上恒成立所以在单调递增,则,所以,即综上所述(3)由(2)可知当时,函数在区间上递增,所以,即,取,则所以所以【点睛】此题考查了参数的取值范围以及恒成立的问题,以及不等式的证明,构造函数是关键,属于较难题.19(1),(2)【解析】(1)当时,与作差可得,即可得到数列是首项为1,公差为1的等差数列,即可求解;对取自然对数,则,即是以1为首项,以2为公比的等比数列,即可求解;(2)由(1)可得,再利用错位相减法求解即可.【详解】解:(1)因为,当时,解得;当时,有,由得,又,所以,即数列是首项为1,公差为1的等差数列,故,又因为,且,取自

14、然对数得,所以,又因为,所以是以1为首项,以2为公比的等比数列,所以,即(2)由(1)知,所以,减去得:,所以【点睛】本题考查由与的关系求通项公式,考查错位相减法求数列的和.20(1)证明见解析(2)【解析】(1)取中点为,连接,根据线段关系可证明为等边三角形,即可得;由为等边三角形,可得,从而由线面垂直判断定理可证明平面,即可证明.(2)以为原点,为,轴建立空间直角坐标系,写出各个点的坐标,并求得平面和平面的法向量,即可由法向量法求得二面角的余弦值.【详解】(1)证明:取中点为,连接,如下图所示:因为,所以,故为等边三角形,则.连接,因为,所以为等边三角形,则.又,所以平面.因为平面,所以.

15、(2)由(1)知,因为平面平面,平面,所以平面,以为原点,为,轴建立如图所示的空间直角坐标系,易求,则,则,.设平面的法向量,则即令,则,故.设平面的法向量,则则令,则,故,所以.由图可知,二面角为钝二面角角,所以二面角的余弦值为.【点睛】本题考查线面垂直的判定,由线面垂直判定线线垂直,由空间向量法求平面与平面形成二面角的大小,属于中档题.21()证明见解析()()【解析】()由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;()求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;()求解平面PBE的一个法向量,计算,即可得二面角DPEB的余弦值【详解】()PC底面ABCD, 如图以点为原点,直线分别为轴,建立空间直角坐标系,则,又,平面PAC,平面PDE,平面PDE平面PAC;()设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;()设为平面PBE的一个法向量,又则,取,得,二面角DPEB的余弦

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论