2021-2022学年广西壮族自治区百色市田阳县田阳高中高考数学全真模拟密押卷含解析_第1页
2021-2022学年广西壮族自治区百色市田阳县田阳高中高考数学全真模拟密押卷含解析_第2页
2021-2022学年广西壮族自治区百色市田阳县田阳高中高考数学全真模拟密押卷含解析_第3页
2021-2022学年广西壮族自治区百色市田阳县田阳高中高考数学全真模拟密押卷含解析_第4页
2021-2022学年广西壮族自治区百色市田阳县田阳高中高考数学全真模拟密押卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,则p是q的( )A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件

2、2某校8位学生的本次月考成绩恰好都比上一次的月考成绩高出50分,则以该8位学生这两次的月考成绩各自组成样本,则这两个样本不变的数字特征是( )A方差B中位数C众数D平均数3设正项等差数列的前项和为,且满足,则的最小值为A8B16C24D364九章算术“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:及时,如图: 记为每个序列中最后一列数之和,则为( )A147B294C882D17645设等差数

3、列的前项和为,若,则( )A21B22C11D126已知定义在上的可导函数满足,若是奇函数,则不等式的解集是( )ABCD7已知,为圆上的动点,过点作与垂直的直线交直线于点,若点的横坐标为,则的取值范围是( )ABCD8已知为虚数单位,实数满足,则 ( )A1BCD9函数的图像大致为( )ABCD10记为等差数列的前项和.若,则( )A5B3C12D1311设集合,则( )ABCD12i是虚数单位,若,则乘积的值是( )A15B3C3D15二、填空题:本题共4小题,每小题5分,共20分。13若复数满足,其中为虚数单位,则的共轭复数在复平面内对应点的坐标为_14已知的三个内角为,且,成等差数列,

4、 则的最小值为_,最大值为_.15函数在的零点个数为_.16若,则的最小值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知抛物线的顶点为原点,其焦点关于直线的对称点为,且.若点为的准线上的任意一点,过点作的两条切线,其中为切点.(1)求抛物线的方程;(2)求证:直线恒过定点,并求面积的最小值.18(12分)已知函数,(其中,).(1)求函数的最小值.(2)若,求证:.19(12分)班主任为了对本班学生的考试成绩进行分析,决定从本班24名女同学,18名男同学中随机抽取一个容量为7的样本进行分析.(1)如果按照性别比例分层抽样,可以得到多少个不同的样本?(写出

5、算式即可,不必计算出结果)(2)如果随机抽取的7名同学的数学,物理成绩(单位:分)对应如下表:学生序号1234567数学成绩60657075858790物理成绩70778085908693若规定85分以上(包括85分)为优秀,从这7名同学中抽取3名同学,记3名同学中数学和物理成绩均为优秀的人数为,求的分布列和数学期望;根据上表数据,求物理成绩关于数学成绩的线性回归方程(系数精确到0.01);若班上某位同学的数学成绩为96分,预测该同学的物理成绩为多少分?附:线性回归方程,其中,.768381252620(12分)2019年12月以来,湖北省武汉市持续开展流感及相关疾病监测,发现多起病毒性肺炎病

6、例,均诊断为病毒性肺炎/肺部感染,后被命名为新型冠状病毒肺炎(CoronaVirusDisease2019,COVID19),简称“新冠肺炎”.下图是2020年1月15日至1月24日累计确诊人数随时间变化的散点图.为了预测在未釆取强力措施下,后期的累计确诊人数,建立了累计确诊人数y与时间变量t的两个回归模型,根据1月15日至1月24日的数据(时间变量t的值依次1,2,10)建立模型和.(1)根据散点图判断,与哪一个适宜作为累计确诊人数y与时间变量t的回归方程类型?(给出判断即可,不必说明理由)(2根据(1)的判断结果及附表中数据,建立y关于x的回归方程;(3)以下是1月25日至1月29日累计确

7、诊人数的真实数据,根据(2)的结果回答下列问题:时间1月25日1月26日1月27日1月28日1月29日累计确诊人数的真实数据19752744451559747111()当1月25日至1月27日这3天的误差(模型预测数据与真实数据差值的绝对值与真实数据的比值)都小于0.1则认为模型可靠,请判断(2)的回归方程是否可靠?()2020年1月24日在人民政府的强力领导下,全国人民共同采取了强力的预防“新冠肺炎”的措施,若采取措施5天后,真实数据明显低于预测数据,则认为防护措施有效,请判断预防措施是否有效?附:对于一组数据(,其回归直线的斜率和截距的最小二乘估计分别为,.参考数据:其中,.5.53901

8、938576403152515470010015022533850721(12分)如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB,AF1,M是线段EF的中点求证:(1)AM平面BDE;(2)AM平面BDF.22(10分)对于非负整数集合(非空),若对任意,或者,或者,则称为一个好集合以下记为的元素个数(1)给出所有的元素均小于的好集合(给出结论即可)(2)求出所有满足的好集合(同时说明理由)(3)若好集合满足,求证:中存在元素,使得中所有元素均为的整数倍参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】

9、根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.2A【解析】通过方差公式分析可知方差没有改变,中位数、众数和平均数都发生了改变.【详解】由题可知,中位数和众数、平均数都有变化.本次和上次的月考成绩相比,成绩和平均数都增加了50,所以没有改变,根据方差公式可知方差不变.故选:A【点睛】本题主要考查样本的数字特征,意在考查学生对这些知识的理解掌握水平.3B【解析】方法一:由题意得,根据等差数列的性质,得成等差数列,设,则,则,当且仅当时等号成

10、立,从而的最小值为16,故选B方法二:设正项等差数列的公差为d,由等差数列的前项和公式及,化简可得,即,则,当且仅当,即时等号成立,从而的最小值为16,故选B4A【解析】根据题目所给的步骤进行计算,由此求得的值.【详解】依题意列表如下:上列乘上列乘上列乘630603153021020156121510所以.故选:A【点睛】本小题主要考查合情推理,考查中国古代数学文化,属于基础题.5A【解析】由题意知成等差数列,结合等差中项,列出方程,即可求出的值.【详解】解:由为等差数列,可知也成等差数列,所以 ,即,解得.故选:A.【点睛】本题考查了等差数列的性质,考查了等差中项.对于等差数列,一般用首项和

11、公差将已知量表示出来,继而求出首项和公差.但是这种基本量法计算量相对比较大,如果能结合等差数列性质,可使得计算量大大减少.6A【解析】构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.7A【解析】由题意得,即可得点M的轨迹为以A,B为左、右焦点,的双曲线,根据双曲线的性质即可得解.【详解】如图,连接OP,AM,由题意得,点

12、M的轨迹为以A,B为左、右焦点,的双曲线,.故选:A.【点睛】本题考查了双曲线定义的应用,考查了转化化归思想,属于中档题.8D【解析】 ,则 故选D.9A【解析】根据排除,利用极限思想进行排除即可【详解】解:函数的定义域为,恒成立,排除,当时,当,排除,故选:【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题10B【解析】由题得,解得,计算可得.【详解】,解得,.故选:B【点睛】本题主要考查了等差数列的通项公式,前项和公式,考查了学生运算求解能力.11D【解析】利用一元二次不等式的解法和集合的交运算求解即可.【详解】由题意知,集合,由集合的交运算

13、可得,.故选:D【点睛】本题考查一元二次不等式的解法和集合的交运算;考查运算求解能力;属于基础题.12B【解析】,选B二、填空题:本题共4小题,每小题5分,共20分。13【解析】把已知等式变形,再由复数代数形式的乘除运算化简,求出得答案【详解】,则,的共轭复数在复平面内对应点的坐标为,故答案为【点睛】本题考查复数代数形式的乘除运算,考查复数的代数表示法及其几何意义准确计算是关键,是基础题14 【解析】根据正弦定理可得,利用余弦定理以及均值不等式,可得角的范围,然后构造函数,利用导数,研究函数性质,可得结果.【详解】由,成等差数列所以所以又化简可得当且仅当时,取等号又,所以令,则当,即时,当,即

14、时,则在递增,在递减所以由,所以所以的最小值为最大值为故答案为:,【点睛】本题考查等差数列、正弦定理、余弦定理,还考查了不等式、导数的综合应用,难点在于根据余弦定理以及不等式求出,考验分析能力以及逻辑思维能力,属难题.151【解析】本问题转化为曲线交点个数问题,在同一直角坐标系内,画出函数的图象,利用数形结合思想进行求解即可.【详解】问题函数在的零点个数,可以转化为曲线交点个数问题.在同一直角坐标系内,画出函数的图象,如下图所示:由图象可知:当时,两个函数只有一个交点.故答案为:1【点睛】本题考查了求函数的零点个数问题,考查了转化思想和数形结合思想.168【解析】根据,利用基本不等式可求得函数

15、最值.【详解】,当且仅当且,即时,等号成立.时,取得最小值.故答案为:【点睛】本题考查基本不等式,构造基本不等式的形式是解题关键.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)见解析,最小值为4【解析】(1)根据焦点到直线的距离列方程,求得的值,由此求得抛物线的方程.(2)设出的坐标,利用导数求得切线的方程,由此判断出直线恒过抛物线焦点.求得三角形面积的表达式,进而求得面积的最小值.【详解】(1)依题意,解得 (负根舍去)抛物线的方程为(2)设点,由,即,得抛物线在点处的切线的方程为,即,点在切线上,同理,综合、得,点的坐标都满足方程.即直线恒过抛物线焦点当时,

16、此时,可知:当,此时直线直线的斜率为,得于是,而把直线代入中消去得,即:当时,最小,且最小值为4【点睛】本小题主要考查点到直线的距离公式,考查抛物线方程的求法,考查抛物线的切线方程的求法,考查直线过定点问题,考查抛物线中三角形面积的最值的求法,考查运算求解能力,属于难题.18(1).(2)答案见解析【解析】(1)利用绝对值不等式的性质即可求得最小值;(2)利用分析法,只需证明,两边平方后结合即可得证.【详解】(1),当且仅当时取等号,的最小值;(2)证明:依题意,要证,即证,即证,即证,即证,又可知,成立,故原不等式成立.【点睛】本题考查用绝对值三角不等式求最值,考查用分析法证明不等式,在不等

17、式不易证明时,可通过执果索因的方法寻找结论成立的充分条件,完成证明,这就是分析法19(1)不同的样本的个数为.(2)分布列见解析,.线性回归方程为.可预测该同学的物理成绩为96分.【解析】(1)按比例抽取即可,再用乘法原理计算不同的样本数. (2)名学生中物理和数学都优秀的有3名学生,任取3名学生,都优秀的学生人数服从超几何分布,故可得其概率分布列及其数学期望.而线性回归方程的计算可用给出的公式计算,并利用得到的回归方程预测该同学的物理成绩.【详解】(1)依据分层抽样的方法,24名女同学中应抽取的人数为名,18名男同学中应抽取的人数为名,故不同的样本的个数为.(2)7名同学中数学和物理成绩均为

18、优秀的人数为3名,的取值为0,1,2,3.,.的分布列为0123 .,.线性回归方程为.当时,.可预测该同学的物理成绩为96分.【点睛】在计算离散型随机变量的概率时,注意利用常见的概率分布列来简化计算(如二项分布、超几何分布等)20(1)适宜(2)(3)()回归方程可靠()防护措施有效【解析】(1)根据散点图即可判断出结果.(2)设,则,求出,再由回归方程过样本中心点求出,即可求出回归方程.(3)()利用表中数据,计算出误差即可判断回归方程可靠;()当时,与真实值作比较即可判断有效.【详解】(1)根据散点图可知:适宜作为累计确诊人数与时间变量的回归方程类型;(2)设,则,;(3)()时,当时,当时,所以(2)的回归方程可靠:()当时,10150远大于7111,所以防护

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论