2021-2022学年贵州省毕节市梁才学校高考数学五模试卷含解析_第1页
2021-2022学年贵州省毕节市梁才学校高考数学五模试卷含解析_第2页
2021-2022学年贵州省毕节市梁才学校高考数学五模试卷含解析_第3页
2021-2022学年贵州省毕节市梁才学校高考数学五模试卷含解析_第4页
2021-2022学年贵州省毕节市梁才学校高考数学五模试卷含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1给出下列三个命题:“”的否定;在中,“”是“”的充要条件;将函数的图象向左平移个单位长度,得到函数的图象其中假命题的个数是( )A0B1C2D32已知抛物线上的点到其焦点的

2、距离比点到轴的距离大,则抛物线的标准方程为( )ABCD3已知函数若存在实数,且,使得,则实数a的取值范围为( )ABCD4双曲线:(,)的一个焦点为(),且双曲线的两条渐近线与圆:均相切,则双曲线的渐近线方程为( )ABCD5若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D56从集合中随机选取一个数记为,从集合中随机选取一个数记为,则在方程表示双曲线的条件下,方程表示焦点在轴上的双曲线的概率为( )ABCD7命题:的否定为ABCD8已知,满足,且的最大值是最小值的4倍,则的值是( )A4BCD9已知等比数列满足,则( )ABCD10命题“”的否定为( )ABCD11设向量,满

3、足,则的取值范围是ABCD12函数在的图象大致为ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知复数,其中为虚数单位,则的模为_.14设Sn为数列an的前n项和,若an0,a1=1,且2Sn=an(an+t),nN*,则S10=_.15已知函数,若函数有个不同的零点,则的取值范围是_16已知变量 (m0),且,若恒成立,则m的最大值_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)如图,三棱柱ABC-A1B1C1中,侧面BCC1B1是菱形,AC=BC=2,CBB1=,点A在平面BCC1B1上的投影为棱BB1的中点E(1)求证:四边形ACC1A1为矩形

4、;(2)求二面角E-B1C-A1的平面角的余弦值18(12分)已知都是大于零的实数(1)证明;(2)若,证明19(12分)如图中,为的中点,.(1)求边的长;(2)点在边上,若是的角平分线,求的面积.20(12分)已知,为正数,且,证明:(1);(2).21(12分)已知函数,其中,为自然对数的底数(1)当时,求函数的极值;(2)设函数的导函数为,求证:函数有且仅有一个零点22(10分)设函数.(1)解不等式;(2)记的最大值为,若实数、满足,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】结合不等式、三角函数的

5、性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题,因为,所以“”是真命题,故其否定是假命题,即是假命题;对于命题,充分性:中,若,则,由余弦函数的单调性可知,即,即可得到,即充分性成立;必要性:中,若,结合余弦函数的单调性可知,即,可得到,即必要性成立.故命题正确;对于命题,将函数的图象向左平移个单位长度,可得到的图象,即命题是假命题故假命题有.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.2B【解析】由抛物线的定义转化,列出方程求出p,即可得到抛物线方程【详解】由抛物线y22px(

6、p0)上的点M到其焦点F的距离比点M到y轴的距离大,根据抛物线的定义可得,所以抛物线的标准方程为:y22x故选B【点睛】本题考查了抛物线的简单性质的应用,抛物线方程的求法,属于基础题3D【解析】首先对函数求导,利用导数的符号分析函数的单调性和函数的极值,根据题意,列出参数所满足的不等关系,求得结果.【详解】,令,得,其单调性及极值情况如下:x0+0_0+极大值极小值若存在,使得,则(如图1)或(如图2)(图1)(图2)于是可得,故选:D.【点睛】该题考查的是有关根据函数值的关系求参数的取值范围的问题,涉及到的知识点有利用导数研究函数的单调性与极值,画出图象数形结合,属于较难题目.4A【解析】根

7、据题意得到,化简得到,得到答案.【详解】根据题意知:焦点到渐近线的距离为,故,故渐近线为.故选:.【点睛】本题考查了直线和圆的位置关系,双曲线的渐近线,意在考查学生的计算能力和转化能力.5D【解析】根据复数的四则运算法则先求出复数z,再计算它的模长【详解】解:复数za+bi,a、bR;2z,2(a+bi)(abi),即,解得a3,b4,z3+4i,|z|故选D【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题6A【解析】设事件A为“方程表示双曲线”,事件B为“方程表示焦点在轴上的双曲线”,分别计算出,再利用公式计算即可.【详解】设事件A为“方程表示

8、双曲线”,事件B为“方程表示焦点在轴上的双曲线”,由题意,则所求的概率为.故选:A.【点睛】本题考查利用定义计算条件概率的问题,涉及到双曲线的定义,是一道容易题.7C【解析】命题为全称命题,它的否定为特称命题,将全称量词改为存在量词,并将结论否定,可知命题的否定为,故选C8D【解析】试题分析:先画出可行域如图:由,得,由,得,当直线过点时,目标函数取得最大值,最大值为3;当直线过点时,目标函数取得最小值,最小值为3a;由条件得,所以,故选D.考点:线性规划.9B【解析】由a1+a3+a5=21得 a3+a5+a7=,选B.10C【解析】套用命题的否定形式即可.【详解】命题“”的否定为“”,所以

9、命题“”的否定为“”.故选:C【点睛】本题考查全称命题的否定,属于基础题.11B【解析】由模长公式求解即可.【详解】,当时取等号,所以本题答案为B.【点睛】本题考查向量的数量积,考查模长公式,准确计算是关键,是基础题.12A【解析】因为,所以排除C、D当从负方向趋近于0时,可得.故选A二、填空题:本题共4小题,每小题5分,共20分。13【解析】利用复数模的计算公式求解即可.【详解】解:由,得,所以.故答案为:.【点睛】本题考查复数模的求法,属于基础题.1455【解析】由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,当时,由,可得,两式相减

10、,可得,整理得,即,数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.15【解析】作出函数的图象及直线,如下图所示,因为函数有个不同的零点,所以由图象可知,所以16【解析】在不等式两边同时取对数,然后构造函数f(x),求函数的导数,研究函数的单调性即可得到结论【详解】不等式两边同时取对数得,即x2lnx1x1lnx2,又即成立,设f(x),x(0,m),x1x2,f(x1)f(x2),则函数f(x)在(0,m)上为增函数,函数的导数,由f(x)0得1lnx0得lnx1,得0 xe,即函数f(x)的最大增区间为(0,e),则m的最大值为e故答案为

11、:e【点睛】本题考查函数单调性与导数之间的应用,根据条件利用取对数得到不等式,从而可构造新函数,是解决本题的关键三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)【解析】(1)通过勾股定理得出,又,进而可得平面,则可得到,问题得证;(2)如图,以为原点,所在直线分别为轴,轴,轴,求出平面的法向量和平面的法向量,利用空间向量的夹角公式可得答案.【详解】(1)因为平面,所以, 又因为,所以,因此,所以, 因此平面,所以,从而,又四边形为平行四边形,则四边形为矩形;(2)如图,以为原点,所在直线分别为轴,轴,轴,所以,平面的法向量,设平面的法向量, 由,由,令,即,

12、 所以,所以,所求二面角的余弦值是.【点睛】本题考查空间垂直关系的证明,考查向量法求二面角的大小,考查学生计算能力,是中档题.18(1)答案见解析(2)答案见解析【解析】(1)利用基本不等式可得,两式相加即可求解.(2)由(1)知,代入不等式,利用基本不等式即可求解.【详解】(1)两式相加得(2)由(1)知于是,【点睛】本题考查了基本不等式的应用,属于基础题.19(1)10;(2).【解析】(1)由题意可得cosADBcosADC,由已知利用余弦定理可得:9+BD252+9+BD2160,进而解得BC的值(2)由(1)可知ADC为直角三角形,可求SADC6,SABC2SADC12,利用角平分线

13、的性质可得,根据SABCSBCE+SACE可求SBCE的值【详解】(1)因为在边上,所以,在和中由余弦定理,得,因为,所以,所以,.所以边的长为10.(2)由(1)知为直角三角形,所以,.因为是的角平分线,所以.所以,所以.即的面积为.【点睛】本题主要考查了余弦定理,三角形的面积公式,角平分线的性质在解三角形中的综合应用,考查了转化思想和数形结合思想,属于中档题20(1)证明见解析;(2)证明见解析.【解析】(1)利用均值不等式即可求证;(2)利用,结合,即可证明.【详解】(1),同理有,.(2),.同理有,.【点睛】本题考查利用均值不等式证明不等式,涉及的妙用,属综合性中档题.21见解析【解析】(1)当时,函数,其定义域为,则,设,易知函数在上单调递增,且,所以当时,即;当时,即,所以函数在上单调递减,在上单调递增,所以函数在处取得极小值,为,无极大值(2)由题可得函数的定义域为,设,显然函数在上单调递增,当时,所以函数在内有一个零点,所以函数有且仅有一个零点;当时,所以函数有且仅有一个零点,所以函数有且仅有一个零点;当时,因为,所以,又,所以函数在内有一个零点,所以函数有且仅有一个零点综上,函数有且仅有一个零点22(1)(2)证明见解析【解析】(1)采用零点分段法:、,由此求解出不等式的解集;(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论