版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知抛物线上一点的纵坐标为4,则点到抛物线焦点的距离为( )A2B3C4D52已知水平放置的ABC是按“斜二测画法”得到如图所示的直观图,其中BOCO1,AO,那么原ABC的面积是()
2、AB2CD3已知a,b是两条不同的直线,是两个不同的平面,且,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件4已知,椭圆的方程,双曲线的方程为,和的离心率之积为,则的渐近线方程为( )ABCD5已知二次函数的部分图象如图所示,则函数的零点所在区间为( )ABCD6若,则的虚部是( )ABCD7已知函数满足,当时,则( )A或B或C或D或8定义在R上的函数满足,为的导函数,已知的图象如图所示,若两个正数满足,的取值范围是( )ABCD9若,则( )ABCD10在中,则在方向上的投影是( )A4B3C-4D-311如图所示程序框图,若判断框内为“”,则输出(
3、)A2B10C34D9812已知向量,若,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13已知函数为偶函数,则_.14某外商计划在个候选城市中投资个不同的项目,且在同一个城市投资的项目不超过个,则该外商不同的投资方案有_种15函数在区间上的值域为_.16函数的最小正周期为_;若函数在区间上单调递增,则的最大值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知,且(1)请给出的一组值,使得成立;(2)证明不等式恒成立18(12分)已知数列满足,且,成等比数列(1)求证:数列是等差数列,并求数列的通项公式;(2)记数列的前n项和为,求数列的前
4、n项和19(12分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.20(12分)如图在四边形中,为中点,.(1)求;(2)若,求面积的最大值.21(12分)设函数(1)当时,解不等式;(2)设,且当时,不等式有解,求实数的取值范围22(10分)中国古建筑中的窗饰是艺术和技术的统一体,给人于美的享受如图(1)为一花窗;图(2)所示是一扇窗中的一格,呈长方形,长30 cm,宽26 cm,其内部窗芯(不含长方形边框)用一种条形木料做成,由两个菱形和六根支条构成,整个窗芯关于长方形边框的两条对称轴成轴对称设菱形的两条对角线长分别为x cm和y cm,窗芯所需条形木料的长度之
5、和为L(1)试用x,y表示L;(2)如果要求六根支条的长度均不小于2 cm,每个菱形的面积为130 cm2,那么做这样一个窗芯至少需要多长的条形木料(不计榫卯及其它损耗)?参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】试题分析:抛物线焦点在轴上,开口向上,所以焦点坐标为,准线方程为,因为点A的纵坐标为4,所以点A到抛物线准线的距离为,因为抛物线上的点到焦点的距离等于到准线的距离,所以点A与抛物线焦点的距离为5.考点:本小题主要考查应用抛物线定义和抛物线上点的性质抛物线上的点到焦点的距离,考查学生的运算求解能力.点评:抛
6、物线上的点到焦点的距离等于到准线的距离,这条性质在解题时经常用到,可以简化运算.2A【解析】先根据已知求出原ABC的高为AO,再求原ABC的面积.【详解】由题图可知原ABC的高为AO,SABCBCOA2,故答案为A【点睛】本题主要考查斜二测画法的定义和三角形面积的计算,意在考察学生对这些知识的掌握水平和分析推理能力.3C【解析】根据线面平行的性质定理和判定定理判断与的关系即可得到答案.【详解】若,根据线面平行的性质定理,可得;若,根据线面平行的判定定理,可得.故选:C.【点睛】本题主要考查了线面平行的性质定理和判定定理,属于基础题.4A【解析】根据椭圆与双曲线离心率的表示形式,结合和的离心率之
7、积为,即可得的关系,进而得双曲线的离心率方程.【详解】椭圆的方程,双曲线的方程为,则椭圆离心率,双曲线的离心率,由和的离心率之积为,即,解得,所以渐近线方程为,化简可得,故选:A.【点睛】本题考查了椭圆与双曲线简单几何性质应用,椭圆与双曲线离心率表示形式,双曲线渐近线方程求法,属于基础题.5B【解析】由函数f(x)的图象可知,0f(0)a1,f(1)1ba0,所以1b2.又f(x)2xb,所以g(x)ex2xb,所以g(x)ex20,所以g(x)在R上单调递增,又g(0)1b0,g(1)e2b0,根据函数的零点存在性定理可知,函数g(x)的零点所在的区间是(0,1),故选B.6D【解析】通过复
8、数的乘除运算法则化简求解复数为:的形式,即可得到复数的虚部.【详解】由题可知,所以的虚部是1.故选:D.【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题.7C【解析】简单判断可知函数关于对称,然后根据函数的单调性,并计算,结合对称性,可得结果.【详解】由,可知函数关于对称当时,可知在单调递增则又函数关于对称,所以且在单调递减,所以或,故或所以或故选:C【点睛】本题考查函数的对称性以及单调性求解不等式,抽象函数给出式子的意义,比如:,考验分析能力,属中档题.8C【解析】先从函数单调性判断的取值范围,再通过题中所给的是正数这一条件和常用不等式方法来确定的取值范围.【详解】由的图
9、象知函数在区间单调递增,而,故由可知.故,又有,综上得的取值范围是.故选:C【点睛】本题考查了函数单调性和不等式的基础知识,属于中档题.9C【解析】利用指数函数和对数函数的单调性比较、三个数与和的大小关系,进而可得出、三个数的大小关系.【详解】对数函数为上的增函数,则,即;指数函数为上的增函数,则;指数函数为上的减函数,则.综上所述,.故选:C.【点睛】本题考查指数幂与对数式的大小比较,一般利用指数函数和对数函数的单调性结合中间值法来比较,考查推理能力,属于基础题.10D【解析】分析:根据平面向量的数量积可得,再结合图形求出与方向上的投影即可.详解:如图所示:,又,在方向上的投影是:,故选D.
10、点睛:本题考查了平面向量的数量积以及投影的应用问题,也考查了数形结合思想的应用问题.11C【解析】由题意,逐步分析循环中各变量的值的变化情况,即可得解.【详解】由题意运行程序可得:,;,;,;不成立,此时输出.故选:C.【点睛】本题考查了程序框图,只需在理解程序框图的前提下细心计算即可,属于基础题.12A【解析】根据向量坐标运算求得,由平行关系构造方程可求得结果.【详解】, ,解得:故选:【点睛】本题考查根据向量平行关系求解参数值的问题,涉及到平面向量的坐标运算;关键是明确若两向量平行,则.二、填空题:本题共4小题,每小题5分,共20分。13【解析】根据偶函数的定义列方程,化简求得的值.【详解
11、】由于为偶函数,所以,即,即,即,即,即,即,即,所以.故答案为:【点睛】本小题主要考查根据函数的奇偶性求参数,考查运算求解能力,属于中档题.1460【解析】试题分析:每个城市投资1个项目有种,有一个城市投资2个有种,投资方案共种.考点:排列组合.15【解析】由二倍角公式降幂,再由两角和的正弦公式化函数为一个角的一个三角函数形式,结合正弦函数性质可求得值域【详解】,则,.故答案为:【点睛】本题考查三角恒等变换(二倍角公式、两角和的正弦公式),考查正弦函数的的单调性和最值求解三角函数的性质的性质一般都需要用三角恒等变换化函数为一个角的一个三角函数形式,然后结合正弦函数的性质得出结论16 【解析】
12、直接计算得到答案,根据题意得到,解得答案.【详解】,故,当时,故,解得.故答案为:;.【点睛】本题考查了三角函数的周期和单调性,意在考查学生对于三角函数知识的综合应用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(答案不唯一)(2)证明见解析【解析】(1)找到一组符合条件的值即可;(2)由可得,整理可得,两边同除可得,再由可得,两边同时加可得,即可得证.【详解】解析:(1)(答案不唯一)(2)证明:由题意可知,因为,所以.所以,即.因为,所以,因为,所以,所以.【点睛】考查不等式的证明,考查不等式的性质的应用.18(1)见解析;(2)【解析】(1)因为,所以,所以,
13、所以数列是等差数列, 设数列的公差为,由可得,因为成等比数列,所以,所以,所以,因为,所以, 解得(舍去)或,所以,所以 (2)由(1)知,所以, 所以19(1).(2)【解析】(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可研究函数的单调性,进而可求极大值;(2)由已知代入可得,x2+(t2)xtlnx0在x0时恒成立,构造函数g(x)x2+(t2)xtlnx,结合导数及函数的性质可求.【详解】(1),x0,由题意可得,0,解可得t4,易得,当x2,0 x1时,f(x)0,函数单调递增,当1x2时,f(x)0,函数单调递减,故当x1时,函数取得极大值f(1)3;(2)由f(x)x
14、2+(t2)xtlnx+22在x0时恒成立可得,x2+(t2)xtlnx0在x0时恒成立,令g(x)x2+(t2)xtlnx,则,(i)当t0时,g(x)在(0,1)上单调递减,在(1,+)上单调递增,所以g(x)ming(1)t10,解可得t1,(ii)当2t0时,g(x)在()上单调递减,在(0,),(1,+)上单调递增,此时g(1)t11不合题意,舍去;(iii)当t2时,g(x)0,即g(x)在(0,+)上单调递增,此时g(1)3不合题意;(iv)当t2时,g(x)在(1,)上单调递减,在(0,1),()上单调递增,此时g(1)t13不合题意,综上,t1时,f(x)2恒成立.【点睛】本
15、题主要考查了利用导数求解函数的单调性及极值,利用导数与函数的性质处理不等式的恒成立问题,分类讨论思想,属于中档题.20(1)1;(2)【解析】(1),在和中分别运用余弦定理可表示出,运用算两次的思想即可求得,进而求出;(2)在中,根据余弦定理和基本不等式,可求得,再由三角形的面积公式以及正弦函数的有界性,求出的面积的最大值【详解】(1)由题设,则在和中由余弦定理得:,即解得,(2)在中由余弦定理得,即,所以面积的最大值为,此时.【点睛】本题主要考查余弦定理在解三角形中的应用,以及三角形面积公式的应用,意在考查学生的数学运算能力,属于中档题21(1);(2).【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果;(2)将不等式整理为,根据能成立思想可知,由此构造不等式求得结果.【详解】(1)当时,可化为,由,解得;由,解得;由,解得综上所述:所以原不等式的解集为(2),有解,即,又,实数的取值范围是【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.22(1)(2)【解析】试题分析:(1)由条件可先求水平
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 流水彩灯课程设计
- 线上健身课程设计
- 2024年度广西壮族自治区国家保安员资格考试提升训练试卷B卷附答案
- 医院弱电施工材料选择方案
- 2024年水电工程水生态修复施工承包合同范本3篇
- 病理 选择题复习试题含答案
- 《传统花鸟画中的吉祥寓意研究》
- 二零二五年度住宅室内装饰装修施工与智能家居智能窗帘合同
- 2025版建筑工程施工安全管理论文汇编合同6篇
- 2024年矿山设备定制采购合同版B版
- 【企业杜邦分析国内外文献综述6000字】
- 2023-2024学年浙江省富阳市小学数学五年级上册期末通关试题
- GB/T 5343.2-2007可转位车刀及刀夹第2部分:可转位车刀型式尺寸和技术条件
- GB/T 32285-2015热轧H型钢桩
- 中考数学真题变式题库
- FZ/T 91019-1998染整机械导布辊制造工艺规范
- 主持人培训 课件
- SHSG0522003 石油化工装置工艺设计包(成套技术)内容规定
- 制造部年终总结报告课件
- 企业大学商学院建设方案
- 粤科版高中通用技术选修1:电子控制技术全套课件
评论
0/150
提交评论