版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1观察下列各式:,根据以上规律,则( )ABCD2设复数满足,则在复平面内的对应点位于( )A第一象限B第二象限C第三象限D第四象限3已知平面向量,满足,且,则与的夹角为( )ABCD4下列选项中,说法正确的是( )A“”的否定是“”B若
2、向量满足 ,则与的夹角为钝角C若,则D“”是“”的必要条件5某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm3ABCD6在函数:;中,最小正周期为的所有函数为( )ABCD7已知复数,则的虚部为( )A1BC1D8已知i是虚数单位,则1+ii+i1+i=( )A-12+32i B12-32i C32+12i D32-12i9若集合,则ABCD10一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为( )ABCD11在中,“”是“为钝角三角形”的( )A充分非必要条件B必要非充分条件C充要条件D既不充分也不必要条件1
3、2我国著名数学家陈景润在哥德巴赫猜想的研究中取得了世界瞩目的成就,哥德巴赫猜想内容是“每个大于的偶数可以表示为两个素数的和”( 注:如果一个大于的整数除了和自身外无其他正因数,则称这个整数为素数),在不超过的素数中,随机选取个不同的素数、,则的概率是( )ABCD二、填空题:本题共4小题,每小题5分,共20分。13在中,是的角平分线,设,则实数的取值范围是_.14已知,满足约束条件,则的最小值为_15已知是函数的极大值点,则的取值范围是_16已知双曲线的左焦点为,、为双曲线上关于原点对称的两点,的中点为,的中点为,的中点为,若,且直线的斜率为,则_,双曲线的离心率为_三、解答题:共70分。解答
4、应写出文字说明、证明过程或演算步骤。17(12分)在平面直角坐标系中,以原点O为极点,x轴的正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的参数方程为(t为参数),曲线C的极坐标方程为4sin(+).(1)求直线l的普通方程与曲线C的直角坐标方程;(2)若直线l与曲线C交于M,N两点,求MON的面积.18(12分)已知数列的前n项和,是等差数列,且.()求数列的通项公式;()令.求数列的前n项和.19(12分)设椭圆的离心率为,圆与轴正半轴交于点,圆在点处的切线被椭圆截得的弦长为(1)求椭圆的方程;(2)设圆上任意一点处的切线交椭圆于点,试判断是否为定值?若为定值,求出该定
5、值;若不是定值,请说明理由20(12分)已知,函数,(是自然对数的底数).()讨论函数极值点的个数;()若,且命题“,”是假命题,求实数的取值范围.21(12分)在国家“大众创业,万众创新”战略下,某企业决定加大对某种产品的研发投入.为了对新研发的产品进行合理定价,将该产品按事先拟定的价格试销,得到一组检测数据如表所示:试销价格(元)产品销量 (件)已知变量且有线性负相关关系,现有甲、乙、丙三位同学通过计算求得回归直线方程分别为:甲; 乙;丙,其中有且仅有一位同学的计算结果是正确的.(1)试判断谁的计算结果正确?(2)若由线性回归方程得到的估计数据与检测数据的误差不超过,则称该检测数据是“理想
6、数据”,现从检测数据中随机抽取个,求“理想数据”的个数的分布列和数学期望.22(10分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】每个式子的值依次构成一个数列,然后归纳出数列的递推关系后再计算【详解】以及数列的应用根据题设条件,设数字,构成一个数列,可得数列满足,则,故选:B【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项2C【解析】化简得到,得到答案.【详解】,故,对应点在第三
7、象限.故选:.【点睛】本题考查了复数的化简和对应象限,意在考查学生的计算能力.3C【解析】根据, 两边平方,化简得,再利用数量积定义得到求解.【详解】因为平面向量,满足,且, 所以,所以,所以 ,所以,所以与的夹角为.故选:C【点睛】本题主要考查平面向量的模,向量的夹角和数量积运算,属于基础题.4D【解析】对于A根据命题的否定可得:“x0R,x02-x00”的否定是“xR,x2-x0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2bm2,但是ab不一定成立;对于D根据元素与集合的关系即可做出判断【详解】选项A根据命题的否定可得:“x0R,x02-x00”的
8、否定是“xR,x2-x0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2bm2,但是ab不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.5D【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为:V=V三棱柱+V半圆柱=221+121=(6+1.5)cm1故答案为6+1.5点睛:根据几何体的三视图知该几何体是三棱柱与
9、半圆柱体的组合体,结合图中数据计算它的体积即可6A【解析】逐一考查所给的函数: ,该函数为偶函数,周期 ;将函数 图象x轴下方的图象向上翻折即可得到 的图象,该函数的周期为 ;函数的最小正周期为 ;函数的最小正周期为 ;综上可得最小正周期为的所有函数为.本题选择A选项.点睛:求三角函数式的最小正周期时,要尽可能地化为只含一个三角函数的式子,否则很容易出现错误一般地,经过恒等变形成“yAsin(x),yAcos(x),yAtan(x)”的形式,再利用周期公式即可7A【解析】分子分母同乘分母的共轭复数即可.【详解】,故的虚部为.故选:A.【点睛】本题考查复数的除法运算,考查学生运算能力,是一道容易
10、题.8D【解析】利用复数的运算法则即可化简得出结果【详解】1+ii+i1+i=-i1+i-i2+i1-i1+i1-i=-i-i2+i-i22=-i+1+i2+12=32-12i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。9C【解析】解一元次二次不等式得或,利用集合的交集运算求得.【详解】因为或,所以,故选C.【点睛】本题考查集合的交运算,属于容易题.10B【解析】由三视图确定原几何体是正三棱柱,由此可求得体积【详解】由题意原几何体是正三棱柱,故选:B【点睛】本题考查三视图,考查棱柱的体积解题关键是由三视图不愿出原几何体11C【解析】分析:从两个方向去判断,先看能推出三角形的形状
11、是锐角三角形,而非钝角三角形,从而得到充分性不成立,再看当三角形是钝角三角形时,也推不出成立,从而必要性也不满足,从而选出正确的结果.详解:由题意可得,在中,因为,所以,因为,所以,结合三角形内角的条件,故A,B同为锐角,因为,所以,即,所以,因此,所以是锐角三角形,不是钝角三角形,所以充分性不满足,反之,若是钝角三角形,也推不出“,故必要性不成立,所以为既不充分也不必要条件,故选D.点睛:该题考查的是有关充分必要条件的判断问题,在解题的过程中,需要用到不等式的等价转化,余弦的和角公式,诱导公式等,需要明确对应此类问题的解题步骤,以及三角形形状对应的特征.12B【解析】先列举出不超过的素数,并
12、列举出所有的基本事件以及事件“在不超过的素数中,随机选取个不同的素数、,满足”所包含的基本事件,利用古典概型的概率公式可求得所求事件的概率.【详解】不超过的素数有:、,在不超过的素数中,随机选取个不同的素数,所有的基本事件有:、,共种情况,其中,事件“在不超过的素数中,随机选取个不同的素数、,且”包含的基本事件有:、,共种情况,因此,所求事件的概率为.故选:B.【点睛】本题考查古典概型概率的计算,一般利用列举法列举出基本事件,考查计算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13【解析】设,由,用面积公式表示面积可得到,利用,即得解.【详解】设,由得:,化简得,由于,故
13、.故答案为:【点睛】本题考查了解三角形综合,考查了学生转化划归,综合分析,数学运算能力,属于中档题.142【解析】作出可行域,平移基准直线到处,求得的最小值.【详解】画出可行域如下图所示,由图可知平移基准直线到处时,取得最小值为.故答案为:【点睛】本小题主要考查线性规划求最值,考查数形结合的数学思想方法,属于基础题.15【解析】方法一:令,则,当,时,单调递减,时,且,在上单调递增,时,且,在上单调递减,是函数的极大值点,满足题意;当时,存在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,即;在的右侧附近,即易
14、知,时,与相切于原点,所以根据与的图象关系,可得16 【解析】设,根据中点坐标公式可得坐标,利用可得到点坐标所满足的方程,结合直线斜率可求得,进而求得;将点坐标代入双曲线方程,结合焦点坐标可求得,进而得到离心率.【详解】左焦点为,双曲线的半焦距设,即,即,又直线斜率为,即,在双曲线上,即,结合可解得:,离心率.故答案为:;.【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17 (1)
15、直线l的普通方程为xy40. 曲线C的直角坐标方程是圆:(x)2(y1)24. (2)4【解析】(1)将直线l参数方程中的消去,即可得直线l的普通方程,对曲线C的极坐标方程两边同时乘以,利用可得曲线C的直角坐标方程;(2)求出点到直线的距离,再求出的弦长,从而得出MON的面积【详解】解:(1)由题意有,得,xy4,直线l的普通方程为xy40.因为4sin所以2sin2cos,两边同时乘以得,22sin2cos,因为,所以x2y22y2x,即(x)2(y1)24,曲线C的直角坐标方程是圆:(x)2(y1)24. (2)原点O到直线l的距离 直线l过圆C的圆心(,1),|MN|2r4,所以MON的
16、面积S |MN|d4.【点睛】本题考查了直线与圆的极坐标方程与普通方程、参数方程与普通方程的互化知识,解题的关键是正确使用这一转化公式,还考查了直线与圆的位置关系等知识.18();()【解析】试题分析:(1)先由公式求出数列的通项公式;进而列方程组求数列的首项与公差,得数列的通项公式;(2)由(1)可得,再利用“错位相减法”求数列的前项和.试题解析:(1)由题意知当时,当时,所以设数列的公差为,由,即,可解得,所以(2)由(1)知,又,得,两式作差,得所以考点 1、待定系数法求等差数列的通项公式;2、利用“错位相减法”求数列的前项和.【易错点晴】本题主要考查待定系数法求等差数列的通项公式、利用
17、“错位相减法”求数列的前项和,属于难题. “错位相减法”求数列的前项和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);相减时注意最后一项 的符号;求和时注意项数别出错;最后结果一定不能忘记等式两边同时除以.19(1); (2)见解析.【解析】(I)结合离心率,得到a,b,c的关系,计算A的坐标,计算切线与椭圆交点坐标,代入椭圆方程,计算参数,即可(II)分切线斜率存在与不存在讨论,设出M,N的坐标,设出切线方程,结合圆心到切线距离公式,得到m,k的关系式,将直线方程代入椭圆方程,利用根与系数关系,表示,结合三
18、角形相似,证明结论,即可【详解】()设椭圆的半焦距为,由椭圆的离心率为知,椭圆的方程可设为.易求得,点在椭圆上,解得,椭圆的方程为. ()当过点且与圆相切的切线斜率不存在时,不妨设切线方程为,由()知,.当过点且与圆相切的切线斜率存在时,可设切线的方程为,即.联立直线和椭圆的方程得,得.,.综上所述,圆上任意一点处的切线交椭圆于点,都有.在中,由与相似得,为定值.【点睛】本道题考查了椭圆方程的求解,考查了直线与椭圆位置关系,考查了向量的坐标运算,难度偏难20(1)当时,没有极值点,当时,有一个极小值点.(2)【解析】试题分析 :(1),分,讨论,当时,对,当时,解得,在上是减函数,在上是增函数
19、。所以,当时,没有极值点,当时,有一个极小值点.(2)原命题为假命题,则逆否命题为真命题。即不等式在区间内有解。设 ,所以 ,设 ,则,且是增函数,所以 。所以分和k1讨论。试题解析:()因为,所以,当时,对,所以在是减函数,此时函数不存在极值,所以函数没有极值点;当时,令,解得,若,则,所以在上是减函数,若,则,所以在上是增函数,当时,取得极小值为,函数有且仅有一个极小值点,所以当时,没有极值点,当时,有一个极小值点.()命题“,”是假命题,则“,”是真命题,即不等式在区间内有解.若,则设 ,所以 ,设 ,则,且是增函数,所以 当时,所以在上是增函数,即,所以在上是增函数,所以,即在上恒成立.当时,因为在是增函数,因为, ,所以在上存在唯一零点,当时,在上单调递减,从而,即,所以在上单调递减,所以当时,即.所以不等式在区间内有解综上所述,实数的取值范围为.21(1)乙同学正确(2)分布列见解析, 【解析】(1)由已知可得甲不正确,求出样本中心点代入验证,即可得出结论;(2)根据(1)中得到的回归方程,求出估值,得到“理想数据”的个数,确定“理想数据”的个数的可能值,并
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色营销 课件
- 西京学院《电工电子实训》2022-2023学年期末试卷
- 西华师范大学《中学历史教学论》2022-2023学年第一学期期末试卷
- 西华师范大学《知识产权法学》2023-2024学年期末试卷
- 西华师范大学《艺术采风》2023-2024学年第一学期期末试卷
- 2024-2025学年高中物理举一反三系列专题2.1 温度和温标(含答案)
- 西华师范大学《平面设计基础》2023-2024学年第一学期期末试卷
- 西华师范大学《个人理财实务》2021-2022学年第一学期期末试卷
- 西华师范大学《创业管理》2022-2023学年第一学期期末试卷
- 西昌学院《英汉笔译实践》2023-2024学年第一学期期末试卷
- 防火门窗施工方案
- “双师教学”在初中数学课堂中的应用
- 战略合作签约仪式教育PPT课程课件
- 土方填筑碾压试验报告
- 老旧小区排水部分雨污水改造监理细则
- 2022年地壳运动与变化教案与学案
- 上海市单位退工证明退工单(四联)
- 《建筑起重吊装工程安全技术规程》JGJ276
- 市政道路水稳层项目施工合同
- 睿丁英语小红帽和大灰狼的故事
- 转人教版七年级上期中复习教案
评论
0/150
提交评论