高中数学选择性必修三 7.5 正态分布(精练)(含答案)_第1页
高中数学选择性必修三 7.5 正态分布(精练)(含答案)_第2页
高中数学选择性必修三 7.5 正态分布(精练)(含答案)_第3页
高中数学选择性必修三 7.5 正态分布(精练)(含答案)_第4页
高中数学选择性必修三 7.5 正态分布(精练)(含答案)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、7.5 正态分布(精练)【题组一 正态分布的特征】1(2021江苏常州市高三期末)设随机变量,函数没有零点的概率是,则( )附:若,则,.ABCD【答案】B【解析】函数没有零点,二次方程无实根,又没有零点的概率是,由正态曲线的对称性知:,故选:B.2(2020江苏省镇江第一中学高二期末)已知随机变量服从正态分布,则( )A0.26B0.24C0.48D0.52【答案】B【解析】因为随机变量服从正态分布,且,则,即正态分布曲线的对称轴为,正态分布的密度曲线的示意图如下,所以,并且,则.故选:B.3(2020全国高三专题练习(理)设,其正态分布密度曲线如图所示,那么从正方形中随机取个点,则取自阴影

2、部分的点的个数的估计值是( )(注:若,则)A7539B6038C7028D6587【答案】D【解析】因为,所以,又因为,所以,所以阴影部分的面积为,所以从正方形中随机取个点,则取自阴影部分的点的个数的估计值是,故选:D.4(2020全国高二单元测试)设随机变量X服从标准正态分布,已知P(X1.88)0.97,则P(|X|1.88)( )A0.94B0.97C0.06D0.03【答案】A【解析】标准正态曲线关于x0对称,P(X1.88)P(X1.88)0.030.030.06,P(|X|1.88)10.060.94,故选:A.5(2020全国高二专题练习)已知随机变量,若,则( )A0.2B0

3、.3C0.5D0.7【答案】A【解析】随机变量,又,根据正态分布的对称性可得,故选:A6(2020全国高三专题练习)重庆奉节县柑橘栽培始于汉代,历史悠久.奉节脐橙果皮中厚脆而易剥,酸甜适度,汁多爽口,余味清香,荣获农业部优质水果中国国际农业博览会金奖等荣誉.据统计,奉节脐橙的果实横径(单位:)服从正态分布,则果实横径在的概率为( )附:若,则;.A0.6827B0.8413C0.8186D0.9545【答案】C【解析】由题得,所以,所以,所以,所以果实横径在的概率为.故选:C.7(2020全国高三专题练习)已知随机变量服从二项分布,其期望,随机变量服从正态分布,若,则( )ABCD【答案】D【

4、解析】由,则,则,则,故选:D.8(2020黑龙江大庆市铁人中学高二期末(理)赵先生朝九晚五上班,上班通常乘坐公交加步行或乘坐地铁加步行赵先生从家到公交站或地铁站都要步行5分钟公交车多且路程近一些,但乘坐公交路上经常拥堵,所需时间(单位:分钟)服从正态分布,下车后从公交站步行到单位要12分钟;乘坐地铁畅通,但路线长且乘客多,所需时间(单位:分钟)服从正态分布,下地铁后从地铁站步行到单位要5分钟给出下列说法:从统计的角度认为所有合理的说法的序号是( )(1)若出门,则乘坐公交上班不会迟到;(2)若出门,则乘坐地铁上班不迟到的可能性更大;(3)若出门,则乘坐公交上班不迟到的可能性更大;(4)若出门

5、则乘坐地铁上班几乎不可能不迟到参考数据:,则,A(1)(2)(3)(4)B(2)(4)C(3)(4)D(4)【答案】C【解析】对于(1)赵先生乘坐公交车的时间不大于43分钟才不会迟到,因为且,所以,所以赵先生上班迟到还是有可能发生的,(1)不合理;(2)赵先生乘坐地铁上班,则其乘坐地铁的时间不大于48分钟,才不会迟到,因为,所以,所以若出门,则乘坐地铁上班不迟到的可能性为0.9773,若乘坐公交,则乘坐时间不大于41分钟才不会迟到,因为,所以,故二者的可能性一样,(2)不合理;(3)赵先生乘坐公交车的时间不大于37分钟才不会迟到,因为,所以,赵先生乘坐地铁的时间不大于44分钟才不会迟到,因为,

6、(3)的说法合理;(4)赵先生乘坐地铁的时间不大于38分钟才不会迟到,因为,所以,即可能性非常小,(4)的说法合理故选:9(多选)(2021湖南长沙市长郡中学高二期末)4月23日为世界读书日,已知某高校学生每周阅读时间服从正态分布,则( )(附:,.)A该校学生每周平均阅读时间为9小时;B该校学生每周阅读时间的标准差为4;C该校学生每周阅读时间不超过3小时的人数占0.3%;D若该校有10000名学生,则每周阅读时间在3-5小时的人数约为210.【答案】AD【解析】因为,所以平均数是9,标准差为2,A正确,B不正确;因为,.结合正态曲线的对称性可得,该校学生每周阅读时间不超过3小时的人数占,C不

7、正确;每周阅读时间在3-5小时的人数占,所以D正确;故选:AD.10(多选)(2020全国高二单元测试)甲、乙两类水果的质量(单位:kg)分别服从正态分布N(1,),N(2,),其正态分布的密度曲线如图所示,则下列说法正确的是( )A甲类水果的平均质量1=0.4 kgB甲类水果的质量比乙类水果的质量更集中于平均值左右C甲类水果的平均质量比乙类水果的质量小D乙类水果的质量服从正态分布的参数2=1.99【答案】ABC【解析】由图像可知,甲类水果的平均质量1=0.4kg,乙类水果的平均质量2=0.8kg,故A,C正确;甲图像比乙图像更高瘦,所以甲类水果的质量比乙类水果的质量更集中于平均值左右,故B正

8、确;乙类水果的质量服从的正态分布的最大值为1.99,即=1.99,21.99,故D错误.故选:ABC11(多选)(2020全国高二专题练习)“杂交水稻之父”袁隆平致力于杂交水稻技术的研究、应用与推广,发明“三系法”籼型杂交水稻,成功研究出“两系法”杂交水稻,创建了超级杂交稻技术体系,为我国粮食安全、农业科学发展和世界粮食供给做出杰出贡献某水稻种植研究所调查某地水稻的株高,得出株高(单位:)服从正态分布,其密度函数为,则下列说法正确的是( )A该地水稻的平均株高为B该地水稻株高的方差为10C该地水稻株高在以上的数量和株高在以下的数量一样多D随机测量一株水稻,其株高在和在(单位:)的概率一样大【答

9、案】AC【解析】因为密度函数为,所以,即均值为100,标准差为10,方差为100,故A正确,B错误;根据正态曲线的特征可知C正确,D错误故选:AC12(多选)(2020全国高二专题练习)下列关于正态分布的命题正确的是( )A正态曲线关于轴对称B当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”C设随机变量,则等于2D当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移【答案】BD【解析】正态曲线关于直线对称,故A不正确;当一定时,越大,正态曲线越“矮胖”,越小,正态曲线越“瘦高”,故B正确;随机变量,则的值等于1,故C不正确;当一定时,正态曲线的位置由确定,随着的变化曲线沿轴平移,

10、D正确故选:BD【题组二 正态分布的实际应用】1(2020湖南高二月考)某质量检测部门为评估工厂某自动化设备生产零件的性能情况,从该自动化设备生产零件的流水线上随机抽取100件零件为样本,测量其直径后,整理得到下表:直径(单位:)78798182838485件数113561933直径(单位:)86878889909193件数18443111经计算,样本的平均值,标准差,用频率值作为概率的估计值.(1)从该自动化设备加工的零件中任意抽取一件,记其直径为,根据下列不等式评估该自动化设备的性能:;(表示相应事件的概率).等级评估方法为:若同时满足上述三个式子,则自动化设备等级为;若仅满足其中两个,则

11、自动化设备等级为;若仅满足其中一个,则自动化设备等级为;若全部都不满足,则自动化设备等级为.试评估该自动化设备性能的等级情况;(2)从样本中直径尺寸在之外的零件中随机抽取2件,求至少有1件直径尺寸在之外的概率.【答案】(1)该自动化设备的等级为;(2).【解析】(1),由图表知,所以该自动化设备的等级为.(2)直径尺寸在之外的零件共5件,分别记为,其中,为直径尺寸在之外的零件,从5件零件中随意抽取2件,所有情况:,共10种,至少有一个在之外的所有情况:,共7种,记至少有1件直径尺寸在之外为事件,则.2(2020全国高三专题练习)标准的医用外科口罩分三层,外层有防水作用,可防止飞来进入口罩里面,

12、中间层有过滤作用,对于直径小于5微米的颗粒阻隔率必须大于,近口鼻的内层可以吸湿,根据国家质量监督检验标准,过滤率是重要的参考标准,为了监控某条口罩生产线的生产过程,检验员每天从该生产线上随机抽取个口罩,并检验过滤率.根据长期生产经验,可以认为这条生产线正常状态下生产的口罩的过滤率服从正态分布.(1)假设生产状态正常,记表示一天内抽取的个口罩中过滤率小于的数量,求及的数学期望;(2)下面是检验员在一天内抽取的10个口罩的过滤率:123456789100.93760.91210.94240.95720.95180.90580.92160.91710.96350.9268经计算得:,(其中为抽取的第

13、个口罩的过滤率)用样本平均数作为的估计值,用样本标准差作为的估计值,利用该正态分布,求(精确到)(附:若随机变量服从正态分布,则;另:)【答案】(1),;(2).【解析】(1)已知检验率服从正态分布,则事件当生产状态正常时,重复不放回的取个口罩属于独立重复事件,故有:,而.(2)由题意知:由平均数近似估计,则有.3(2020全国高三专题练习)从某市的一次高三模拟考试中,抽取3000名考生的数学成绩(单位:分),并按, , , , ,分成7组,制成频率分布直方图,如图所示()估计这3000名考生数学成绩的平均数和方差 (同一组中的数据用该组区间的中点值作代表);()由直方图可认为该市考生数学成绩

14、服从正态分布,其中,分别为()估中的和方差,据此估计该市10000名考生中数学成绩不低于122分的人数(结果精确到整数)附:若,则【答案】()110,150;()1587.【解析】()由题意知:,()由()可知,所以,而,所以,因此估计该市10000名考生中数学成绩不低于122分的人数为4(2020河北衡水市)振华大型电子厂为了解每位工人每天制造某种电子产品的件数,记录了某天所有工人每人的制造件数,并对其进行了简单随机抽样统计,统计结果如下:制造电子产品的件数工人数131141(1)若去掉内的所有数据,则件数的平均数减少2到3(即大于等于2,且小于3),试求样本中制造电子产品的件数在的人数的取

15、值范围;(同一区间数据用该组区间数据的中点值作代表)(2)若电子厂共有工人1500人,且每位工人制造电子产品的件数,试估计制造电子产品件数小于等于48件的工人的人数附:若,则,【答案】(1),;(2)30【解析】(1)设样本中所有制造电子产品的件数的平均值为,则,设样本中去掉内的所有数据后制造电子产品的件数的平均值为,则,依题可得,即,解得,所以件数在的人数的取值范围为,;(2)因为,所以,所以,因为,所以所以,所以估计1500人中每天制造产品件数小于等于50的人数为【题组三 正态分布与其他知识的综合运用】1(2021江西南昌市)2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政

16、策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:2010:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:209:40记作、9:4010:00记作,10:0010:20记作,10:2010:40记作,例如:10点04分,记作时刻64.()估计这600辆车在9:2010:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);()为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4

17、辆车中,在9:2010:00之间通过的车辆数为X,求X的分布列;()根据大数据分析,车辆在每天通过该收费站点的时刻T服从正态分布,其中可用3日数据中的600辆车在9:2010:40之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:4610:40之间通过的车辆数(结果保留到整数).附:若随机变量T服从正态分布,则,.【答案】()10:04;()答案见解析;()819.【解析】()这600辆车在9:2010:40时间段内通过该收费点的时刻的平均值为:,即1004()由频率分布直方图和分层抽样

18、的方法可知,抽取的10辆车中,在10:00前通过的车辆数就是位于时间分组中在20,60这一区间内的车辆数,即,所以X的可能的取值为0,1,2,3,4.所以,.所以X的分布列为:X01234P()由(1)得,所以,估计在9:4610:40之间通过的车辆数也就是在46,100通过的车辆数,由,得,所以估计在在9:4610:40之间通过的车辆数为.2(2020江苏南通市海安县实验中学)2020年8月,体育总局和教育部联合提出了关于深化体教融合,促进青少年健康发展的意见.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远掷实心球1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远1

19、5分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟跳绳个数得分17181920(1)现从样本的100名学生中,任意选取2人,求两人得分之和不大于35分的概率;(2)若该校初三年级所有学生的跳绳个数,用样本数据的平均值和方差估计总体的期望和方差.已知样本方差(各组数据用中点值代替).根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步.假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:全年级有10

20、00名学生,预估正式测试每分钟跳182个以上人数;(结果四舍五入到整数)若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望.附:若,则.【答案】(1);(2)人;分布列答案见解析,数学期望:.【解析】(1)由频率分步直方图得,得分为17,18的人数分别为6人,12人,所以两人得分之和不大于35分为两人得分均为17分,或两人中1人17分1人18分,所以.(2)又,所以正式测试时,所以,所以,所以人;由正态分布模型,任取1人,每分钟跳绳个数195以上的概率为,即,所以,所以,所以的分布列为0123所以.答:(1)两人得分之和不大于35分的概率为;(

21、2)每分钟跳182个以上人数为841;随机变量的期望.3(2021全国)随着如今人们生活水平的不断提高,旅游成了一种生活时尚,尤其是老年人的旅游市场在不断扩大.为了了解老年人每年旅游消费支出(单位:元)的情况,相关部门抽取了某地区名老年人进行问卷调查,并把所得数据列成如下所示的频数分布表:组别频数(1)求所得样本平均数(精确到元);(2)根据样本数据,可近似地认为老年人的旅游费用支出X服从正态分布,若该地区共有老年人人,试估计有多少位老年人旅游费用支出在元以上;(3)已知样本数据中旅游费用支出在范围内的名老人中有名女性,名男性.现想选其中名老人回访,记选出的男生人数为,求的分布列.附:若,.【

22、答案】(1)元;(2)位;(3)分布列见解析.【解析】(1)设样本平均数为,则有:(元);(2),所以旅游费用在元以上的概率为,所以估计有位老人旅游费用支出在元以上;(3)由题意可知,的取值为、,.所以,随机变量的分布列为4(2020沙坪坝区重庆八中高三月考)某单位招考工作人员,须参加初试和复试,初试通过后组织考生参加复试,共5000人参加复试,复试共三道题,第一题考生答对得3分,答错得0分,后两题考生每答对一道题得5分,答错得0分,答完三道题后的得分之和为考生的复试成绩.(1)通过分析可以认为考生初试成绩服从正态分布,其中,试估计初试成绩不低于90分的人数;(2)已知某考生已通过初试,他在复

23、试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响.记该考生的复试试成绩为,求的分布列及数学期望.附:若随机变量服从正态分布,则,【答案】(1)114人;(2)分布列见解析,.【解析】(1)学生笔试成绩服从正态分布,其中,估计笔试成绩不低于90分的人数为人(2)的取值分别为0,3,5,8,10,13,则的分布为故的分布列为:035810135(2020全国)为了了解某类工程的工期,某公司随机选取了10个这类工程,得到如下数据(单位:天):17,23,19,21,22,21,19,17,22,19(1)若该类工程的工期服从正态分布,用样本的平均数和标准差分别作为和的估计值

24、()求和的值;()由于疫情需要,要求在22天之内完成一项此类工程,估计能够在规定时间内完成该工程的概率(精确到0.01)(2)在上述10个这类工程的工期中任取2个工期,设这2个工期的差的绝对值为,求的分布列和数字期望附:若随机变量服从正态分布,则,【答案】(1)(),;()0.84;(2)分布列见解析,.【解析】(1)()样本的平均数为,样本的标准差为因此,()22天之内完成该工程的概率,所以估计能够在规定时间内完成该工程的概率为0.84(2)把这10个工期从小到大排列,为17,17,19,19,19,21,21,22,22,23,则的可能取值为0,1,2,3,4,5,6,所以的分布列是012

25、3456的数学期望是6(2020江苏省天一中学)第13届女排世界杯于2019年9月14日在日本举行,共有12支参赛队伍.本次比赛启用了新的排球用球MIKSA-V200W ,已知这种球的质量指标 (单位:g )服从正态分布N (270, ).比赛赛制采取单循环方式,即每支球队进行11场比赛(采取5局3胜制),最后靠积分选出最后冠军积分规则如下:比赛中以3:0或3:1取胜的球队积3分,负队积0分;而在比赛中以3:2取胜的球队积2分,负队积1分.已知第10轮中国队对抗塞尔维亚队,设每局比赛中国队取胜的概率为p(0p1). (1)如果比赛准备了1000个排球,估计质量指标在(260,265内的排球个数

26、(计算结果取整数).(2)第10轮比赛中,记中国队3:1取胜的概率为.(i)求出f(p)的最大值点;(ii)若以作为p的值记第10轮比赛中,中国队所得积分为X,求X的分布列.参考数据: N(u,),则p(-X+)0.6826,p(-2X +2)0.9644.【答案】(1)140;(2)(i);(ii)分布列见解析.【解析】(1)因为服从正态分布N (270, ),所以,所以质量指标在(260,265内的排球个数为个;(2)(i),令,得,当时,在上单调递增;当时,在上单调递减;所以的最大值点;(ii)的可能取值为0,1,2,3.; ;所以的分布列为0123P7(2020全国)网上订外卖已经成为

27、人们日常生活中不可或缺的一部分. M外卖平台(以下简称M外卖)为了解其在全国各城市的业务发展情况,随机抽取了100个城市,调查了M外卖在今年2月份的订单情况,并制成如下频率分布表.订单:(单位:万件) 频率0.040.060.100.10订单:(单位:万件)频率0.300.200.100.080.02(1)由频率分布表可以认为,今年2月份M外卖在全国各城市的订单数(单位:万件)近似地服从正态分布,其中为样本平均数(同一组数据用该区间的中点值作代表),为样本标准差,它的值已求出,约为3.64,现把频率视为概率,解决下列问题:从全国各城市中随机抽取6个城市,记今年2月份M外卖订单数Z在区间内的城市数为,求的数学期望(取整数);M外卖决定在该月订单数低于7万件的城市开展“订外卖,抢红包”的营销活动来提升业绩,据统计,开展此活动后城市每月外卖订单数将提高到平均每月9万件的水平,现从全国2月订单数不超过7万件的城市中采用分层抽样的方法选出100个城市开展营销活动,若每接一件外卖订单平均可获纯利润5元,但每件外卖订单平均需送出红包2元,则M外卖在这100个城市中开展

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论