


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、课题:对数函数及其性质(一) 四川省剑阁县开封中学 任俊武教学任务:(1)通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;(2)能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;(3)通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生数形结合的思想方法,学会研究函数性质的方法教学重点:掌握对数函数的图象和性质教学难点:对数函数的定义,对数函数的图象和性质及应用 教学过程:引入课题1(知识方法准备) eq oac(,1) 学习指数函数时,对其性质研究了哪些内容,采取怎样的
2、方法?设计意图:结合指数函数,让学生熟知对于函数性质的研究内容,熟练研究函数性质的方法借助图象研究性质 eq oac(,2) 对数的定义及其对底数的限制设计意图:为讲解对数函数时对底数的限制做准备2(引例)教材P81引例处理建议:在教学时,可以让学生利用计算器填写下表:碳14的含量P生物死亡年数t然后引导学生观察上表,体会“对每一个碳14的含量P的取值,通过对应关系,生物死亡年数t都有唯一的值与之对应,从而t是P的函数” (进而引入对数函数的概念)新课教学(一)对数函数的概念1定义:函数,且叫做对数函数(logarithmic function)其中是自变量,函数的定义域是(0,+)注意: e
3、q oac(,1) 对数函数的定义与指数函数类似,都是形式定义,注意辨别如:, 都不是对数函数,而只能称其为对数型函数 eq oac(,2) 对数函数对底数的限制:,且(二)对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数的图象,结合图象研究函数的性质研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性探索研究: eq oac(,1) 在同一坐标系中画出下列对数函数的图象;(可用描点法,也可借助科学计算器或计算机)(1) (2) (3) (4) eq oac(,2) 类比指数函数图象和性质的研究,研究对数函数的性质并填
4、写如下表格:图象特征函数性质函数图象都在y轴右侧函数的定义域为(0,)图象关于原点和y轴不对称非奇非偶函数向y轴正负方向无限延伸函数的值域为R函数图象都过定点(1,1)自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数第一象限的图象纵坐标都大于0第一象限的图象纵坐标都大于0第二象限的图象纵坐标都小于0第二象限的图象纵坐标都小于0 eq oac(,3) 思考底数是如何影响函数的(学生独立思考,师生共同总结)规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大(三)典型例题说明:本例主要考察学生对对数函数定义中底数和定义域的限制,加深对对数函数的理解 巩固练习:(教材P85练习2)说明:本例主要考察学生利用对数函数的共性研究,熟悉对数函数的性质,渗透应用函数的观点解决问题的思想方法说明:本例主要考察学生对对数函数的理解,提高利用函数性质解决问题的能力(1)若y=lg(ax2-4ax+3)的定义域为R,求实数a的取值范围; (2)若y=lg(ax2+2x+1)的值域为R,求实数a的取值范围。归纳小结,强化思想本小节的目的要求是掌握对数函数的概念、图象和性质在理解对数函数的定
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年春季学期人教部编版初中七年级社会实践活动计划
- 金融衍生品财务担保合同风险防范与会计核算规范
- 商业综合体场地监管合作协议
- 房屋买卖交易资金托管及监管服务合同
- 车辆抵押担保与汽车金融产品创新合同
- 草莓种植基地农业废弃物回收利用合同范本
- 餐厅餐饮服务人员劳动合同及服务质量监控协议
- 餐饮企业承包经营及市场拓展合同
- 省级茶叶质量安全监管茶园承包协议
- 拆迁安置区房屋置换补偿合同
- 2025企业清洁服务合同模板
- GB 45671-2025建筑防水涂料安全技术规范
- 《危险货物港口作业重大事故隐患判定指南》解读与培训
- 林业安全生产宣传要点
- GB/T 45565-2025锂离子电池编码规则
- 老年肺炎临床诊断与治疗专家共识(2024年版)解读课件
- 2025年社会保障政策考试卷及答案关系
- 2025年小学一年级奥林匹克数学竞赛训练考试题(附答案解析)
- 2024-2025学年人教版数学六年级下学期期末试卷(含答案)
- 2025年宁夏银川市中考物理一模试卷(含解析)
- 2025年初中学业水平考试地理模拟试卷(核心素养与能源地理)
评论
0/150
提交评论