线性代数试题及答案1_第1页
线性代数试题及答案1_第2页
线性代数试题及答案1_第3页
线性代数试题及答案1_第4页
线性代数试题及答案1_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、一、选择题(本题共4小题,每小题4分,满分16分。每小题给出的四个选项中,只有一项符合题目要求)1、设,为n阶方阵,满足等式,则必有( )(A)或; (B); (C)或; (D)。2、和均为阶矩阵,且,则必有( )(A) ; (B); (C) . (D) 。3、设为矩阵,齐次方程组仅有零解的充要条件是( )(A) 的列向量线性无关; (B) 的列向量线性相关;(C) 的行向量线性无关; (D) 的行向量线性相关.4、 阶矩阵为奇异矩阵的充要条件是( )(A) 的秩小于; (B) ;(C) 的特征值都等于零; (D) 的特征值都不等于零;二、填空题(本题共4小题,每题4分,满分16分)5、若4阶

2、矩阵的行列式,是A的伴随矩阵,则= 。6、为阶矩阵,且,则 。7、已知方程组无解,则 。8、二次型是正定的,则的取值范围是 。三、计算题(本题共2小题,每题8分,满分16分)9、计算行列式10、计算阶行列式四、证明题(本题共2小题,每小题8分,满分16分。写出证明过程)11、若向量组线性相关,向量组线性无关。证明:(1) 能有线性表出;(2) 不能由线性表出。12、设是阶矩方阵,是阶单位矩阵,可逆,且。证明(1) ;(2) 。 五、解答题(本题共3小题,每小题12分,满分32分。解答应写出文字说明或演算步骤)13、设,求一个正交矩阵使得为对角矩阵。15、设四元非齐次线性方程组的系数矩阵的秩为3

3、,已知,是它的三个解向量,且,求该方程组的通解。解答和评分标准一、选择题1、C; 2、D; 3、A; 4、A。二、填空题5、-125; 6、; 7、-1; 8、。三、计算题9、解:第一行减第二行,第三行减第四行得:第二列减第一列,第四列减第三列得: (4分)按第一行展开得按第三列展开得。 (4分)10、解:把各列加到第一列,然后提取第一列的公因子,再通过行列式的变换化为上三角形行列式 (4分) (4分)四、证明题11、证明:(1)、 因为线性无关,所以线性无关。,又线性相关,故能由线性表出。 (4分),(2)、(反正法)若不,则能由线性表出,不妨设。由(1)知,能由线性表出,不妨设。所以,这表

4、明线性相关,矛盾。 (4分)12、证明 (1) (4分)(2)由(1)得:,代入上式得 (4分)五、解答题13、解:(1)由得的特征值为,。 (4分)(2)的特征向量为,的特征向量为,的特征向量为。 (3分)(3)因为特征值不相等,则正交。 (2分)(4)将单位化得, (2分)(5)取(6) (1分)14、解:该非齐次线性方程组对应的齐次方程组为因,则齐次线性方程组的基础解系有1个非零解构成,即任何一个非零解都是它的基础解系。 (5分)另一方面,记向量,则直接计算得,就是它的一个基础解系。根据非齐次线性方程组解的结构知,原方程组的通解为,。 (7分)15、解:将 = 1 * GB3 与 = 2 * GB3 联立得非齐次线性方程组: = 3 * GB3 若此非齐次线性方程组有解, 则 = 1 * GB3 与 = 2 * GB3 有公共解, 且 = 3 * GB3 的解即为所求全部公共解. 对 = 3 * GB3 的增广矩阵作初等行变换得: . (4分)1当时,有,方程组 = 3 * GB3 有解, 即 = 1 * GB3 与 = 2 * GB3 有公共解, 其全部公共解即为 = 3 * GB3 的通解,此时,则方程组 = 3 * GB3 为齐次线性方程组,其基础解系为: ,所以 = 1 * GB3 与 = 2 * GB3 的全部公共解为,k为任意常数. (4分)2 当时,有,方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论