版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE9 页 共 NUMPAGES9 页初三数学圆的知识点和公式总结初中数学圆知识点总结【一】1.不在同一直线上的三点确定一个圆2.垂径定理 垂直于弦的直径平分这条弦并且平分弦所对的两条弧推论1 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧弦的垂直平分线经过圆心,并且平分弦所对的两条弧平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论2 圆的两条平行弦所夹的弧相等3.圆是以圆心为对称中心的中心对称图形4.圆是定点的间隔 等于定长的点的集合5.圆的内部可以看作是圆心的间隔 小于半径的点的集合6.圆的外部可以看作是圆心的间隔 大于半径的点的集合7.同圆或等圆的半径
2、相等8.到定点的间隔 等于定长的点的轨迹,是以定点为圆心,定长为半径的圆9.定理 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦 相等,所对的弦的弦心距相等10.推论 在同圆或等圆中,假设两个圆心角、两条弧、两条弦或两 弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等。11定理 圆的内接四边形的对角互补,并且任何一个外角都等于它 的内对角12.直线L和O相交 d直线L和O相切 d=r直线L和O相离 dr13.切线的断定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线14.切线的性质定理 圆的切线垂直于经过切点的半径15.推论1 经过圆心且垂直于切线的直线必经过切点16.推论2
3、 经过切点且垂直于切线的直线必经过圆心17.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等, 圆心和这一点的连线平分两条切线的夹角18.圆的外切四边形的两组对边的和相等 外角等于内对角19.假设两个圆相切,那么切点一定在连心线上20.两圆外离 dR+r 两圆外切 d=R+r.两圆相交 R-rr).两圆内切 d=R-r(Rr) 两圆内含dr)21.定理 相交两圆的连心线垂直平分两圆的公共弦22.定理 把圆分成n(n3):依次连结各分点所得的多边形是这个圆的内接正n边形经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形23.定理 任何正多边形都有一个外接圆和一个内切
4、圆,这两个圆是同心圆24.正n边形的每个内角都等于(n-2)180/n25.定理 正n边形的半径和边心距把正n边形分成2n个全等的直角三角形26.正n边形的面积Sn=pnrn/2 p表示正n边形的周长27.正三角形面积3a/4 a表示边长28.假设在一个顶点周围有k个正n边形的角,由于这些角的和应为 360,因此k(n-2)180/n=360化为(n-2)(k-2)=429.弧长计算公式:L=n兀R/18030.扇形面积公式:S扇形=n兀R2/360=LR/231.内公切线长= d-(R-r) 外公切线长= d-(R+r)32.定理 一条弧所对的圆周角等于它所对的圆心角的一半33.推论1 同弧
5、或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等34.推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所 对的弦是直径35.弧长公式 l=a_ a是圆心角的弧度数r 0 扇形面积公式 s=1/2_初中数学圆知识点总结【二】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA叫半径。由圆的意义可知:圆上各点到定点(圆心O)的间隔 等于定长的点都在圆上。就是说:圆是到定点的间隔 等于定长的点的集合,圆的内部可以看作是到圆。心的间隔 小于半径的点的集合。圆的外部可以看作是到圆心的间隔 大于半
6、径的点的集合。连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。圆上任意两点间的部分叫圆弧,简称弧。圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。由弦及其所对的弧组成的圆形叫弓形。圆心一样,半径不相等的两个圆叫同心圆。可以重合的两个圆叫等圆。同圆或等圆的半径相等。在同圆或等圆中,可以互相重合的弧叫等弧。二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。2、反证法反证法的三个步骤:假设命题的结论不成立;从这个假
7、设出发,经过推理论证,得出矛盾;由矛盾得出假设不正确,从而肯定命题的结论正确。例如:求证三角形中最多只有一个角是钝角。证明:设有两个以上是钝角那么两个钝角之和180与三角形内角和等于180矛盾。不可能有二个以上是钝角。即最多只能有一个是钝角。三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。弦的垂直平分线经过圆心,并且平分弦所对的两条弧。平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。推理2:圆两条平行弦所夹的弧相等。四、圆心角、弧、
8、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。实际上,圆绕圆心旋转任意一个角度,都可以与原来的图形重合。顶点是圆心的角叫圆心角,从圆心到弦的间隔 叫弦心距。定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距相等。推理:在同圆或等圆中,假设两个圆心角、两条弧、两条弦或两条弦的弦心距中,有一组量相等,那么它们所对应的其余各组量都分别相等。五、圆周角顶点在圆上,并且两边都和圆相交的角叫圆周角。推理1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推理2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。推理3:假设三角形一边上的中
9、线等于这边的一半,那么这个三角形是直角三角形。初中数学圆知识点总结【三】1、对称性:a:圆的对称性,虽然其它一些图形也是有,但圆有无数条对称轴这个特性其它图形所没有的,垂径定理,切线长定理,及正n边形的计算都应用到了这个特性。b:旋转不变性,圆心角、弧、弦、弦心距关系,遇到有关圆习题,要抓住这个特性充分利用,许多问题可以找到解题思路。2、三个角:圆心角、圆周角,以及圆内接四边形的外角(对角)这是在有关圆的问题中,找角相等必不可少的方法。3、三个垂直:垂径定理,直径所对的圆周角,切线的性质它可以有效的把许多问题转化到直角三角形中,使问题得以解决。4、四大关系:点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,圆与正多边形的关系,掌握切线的断定和性质以及有关计算是重点。5、有关计算问题:有关线段的计算,正多边形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 安徽xx工业废盐资源化利用项目可行性研究报告
- 电力系统网络视频集中监控解决方案
- 风力发电站运营与管理培训
- 电力系统建模与仿真
- Naftypramide-DA-992-生命科学试剂-MCE
- MRX-2843-hydrochloride-UNC2371-hydrochloride-生命科学试剂-MCE
- minus-BO-2367-生命科学试剂-MCE
- Methyl-2-6-bromo-1H-indol-3-yl-acetate-生命科学试剂-MCE
- MDK0734-生命科学试剂-MCE
- Lipid-B37-生命科学试剂-MCE
- 《中国传统文化》课件模板(六套)
- 第24课《寓言四则》说课稿 2024-2025学年统编版语文七年级上册
- 色卡-CBCC中国建筑标准色卡(千色卡1026色)
- 2024-2030年中国水产养殖行业发展形势及投资风险分析报告
- GB/T 42125.1-2024测量、控制和实验室用电气设备的安全要求第1部分:通用要求
- 采购部门年终总结报告
- 蓝精灵课件教学课件
- 2024年河北省高考历史试卷(含答案解析)
- 译林三起小学英语六年级上册期末复习补全对话短文专题练习一附答案解析
- 泵站工程设计(共138张课件)
- 2024秋期河南开放大学本科《法律社会学》一平台无纸化考试(作业练习1至3+我要考试)试题及答案
评论
0/150
提交评论