




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE5 页 共 NUMPAGES5 页高一数学必修二知识点赏析分布2022高一数学必修二知识点1直线和平面的位置关系:直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行直线在平面内有无数个公共点直线和平面相交有且只有一个公共点直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。esp.空间向量法(找平面的法向量)规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0角由此得直线和平面所成角的取值范围为0,90最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角三垂线定理及逆定理:假设平面内的一条直线,与这个平
2、面的一条斜线的射影垂直,那么它也与这条斜线垂直esp.直线和平面垂直直线和平面垂直的定义:假设一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。直线与平面垂直的断定定理:假设一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。直线与平面垂直的性质定理:假设两条直线同垂直于一个平面,那么这两条直线平行。直线和平面平行没有公共点直线和平面平行的定义:假设一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。直线和平面平行的断定定理:假设平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平
3、行。直线和平面平行的性质定理:假设一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。高一数学必修二知识点21.函数的奇偶性(1)假设f(x)是偶函数,那么f(x)=f(-x(2)假设f(x)是奇函数,0在其定义域内,那么f(0)=0(可用于求参数(3)判断函数奇偶性可用定义的等价形式:f(x)f(-x)=0或(f(x)0(4)假设所给函数的解析式较为复杂,应先化简,再判断其奇偶性;(5)奇函数在对称的单调区间内有一样的单调性;偶函数在对称的单调区间内有相反的单调性;2.复合函数的有关问题(1)复合函数定义域求法:假设的定义域为a,b,其复合函数fg(x)的定义域
4、由不等式ag(x)b解出即可;假设fg(x)的定义域为a,b,求f(x)的定义域,相当于xa,b时,求g(x)的值域(即f(x)的定义域研究函数的问题一定要注意定义域优先的原那么。(2)复合函数的单调性由“同增异减”断定;3.函数图像(或方程曲线的对称性)(1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;(2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然;(3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0(4)曲线
5、C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;(5)假设函数y=f(x)对xR时,f(a+x)=f(a-x)恒成立,那么y=f(x)图像关于直线x=a对称,高中数学;(6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高一数学必修二知识点31.函数的概念:设A、B是非空的数集,假设按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有确定的数f(x)和它对应,那么就称f:AB为从集合A到集合B的一个函数.记作:y=f(x),xA.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值
6、的集合f(x)|xA叫做函数的值域.注意:2假设只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域即是指能使这个式子有意义的实数的集合;3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要根据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)假设函数是由一些根本函数通过四那么运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,假设两个函数的定义域和对应关
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 介入人员授权管理制度
- 义齿公司进度管理制度
- 人脸识别签到管理制度
- 会员收费标准管理制度
- 会计内部稽核管理制度
- 企业接单收款管理制度
- 书法协会安全管理制度
- 不接电话公司管理制度
- 个人康复门诊管理制度
- 乡村值班日常管理制度
- 护理安全管理课件
- 2025年甘肃省陇南市事业单位招聘247人笔试参考题库及答案详解一套
- 2025年心理健康指导师职业资格考试试题及答案
- 石油行业采购物资质量事故案例规律分析课件
- 七年级下册道德与法治期末复习必刷主观题含答案
- 2024年广东省揭西县教师招聘考试《教育学和心理学基础知识》真题库及答案
- 2025年新高考2卷(新课标Ⅱ卷)英语试卷(含答案解析)
- 北京市顺义区2023-2024学年六年级下学期数学期末试卷(含答案)
- 公司安全廉政管理制度
- JG/T 283-2010膨胀玻化微珠轻质砂浆
- 电力法规考试试题及答案
评论
0/150
提交评论