全国中考数学试卷解析分类汇编第38章动态问题资料_第1页
全国中考数学试卷解析分类汇编第38章动态问题资料_第2页
全国中考数学试卷解析分类汇编第38章动态问题资料_第3页
全国中考数学试卷解析分类汇编第38章动态问题资料_第4页
全国中考数学试卷解析分类汇编第38章动态问题资料_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精品文档精品文档蒆PAGE69蒅蚁肃薄蕿莄袇袇芇薁袂薁蚈袆芈蒆蚅蒂蚁螂螈膄虿荿莇蒂蚄羃袈螆螆羈袅莂蒃芅袈羄膇薈薇节膂精品文档动向问题一.选择题1.(2015湖南邵阳第9题3分)如图,在等腰ABC中,直线l垂直底边BC,现将直线l沿线段BC从B点匀速平移至C点,直线l与ABC的边相交于E、F两点设线段EF的长度为y,平移时间为t,则下列图中能较好反应y与t的函数关系的图象是()ABCD考点:动点问题的函数图象.专题:数形联合解析:作ADBC于D,如图,设点F运动的速度为1,BD=m,根据等腰三角形的性质得B=C,BD=CD=m,当点F从点B运动到D时,如图1,利用正切定义即可获得y=tanB?t

2、(0tm);当点F从点D运动到C时,如图2,利用正切定义可得y=tanC?CF=tanB?t+2mtanB(mt2m),即y与t的函数关系为两个一次函数关系式,于是可对四个选项进行判断解答:解:作ADBC于D,如图,设点F运动的速度为1,BD=m,ABC为等腰三角形,B=C,BD=CD,当点F从点B运动到D时,如图1,在RtBEF中,tanB=,y=tanB?t(0tm);当点F从点D运动到C时,如图2,在RtCEF中,tanC=,y=tanC?CF=tanC?(2mt)=tanB?t+2mtanB(mt2m)应选B点评:本题考察了动点问题的函数图象:利用三角函数关系获得两变量的函数关系,再利

3、用函数关系式画出对应的函数图象注意自变量的取值范围2.(2015湖北荆州第9题3分)如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BCCDDA运动,抵达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,抵达A点停止运动设P点运动时间为(xs),BPQ的面积为y(cm2),则y对于x的函数图象是()ABCD考点:动点问题的函数图象解析:首先根据正方形的边长与动点P、Q的速度可知动点Q始终在AB边上,而动点P可以在BC边、CD边、AD边上,再分三种情况进行议论:0 x1;1x2;2x3;分别求出y对于x的函数解析式,然后根据函数的图象与性

4、质即可求解解答:解:由题意可得BQ=x0 x1时,P点在BC边上,BP=3x,则BPQ的面积=BP?BQ,解y=?3x?x=x2;故A选项错误;1x2时,P点在CD边上,则BPQ的面积=BQ?BC,解y=?x?3=x;故B选项错误;2x3时,P点在AD边上,AP=93x,则BPQ的面积=AP?BQ,解y=?(93x)?x=xx2;故D选项错误应选C点评:本题考察了动点问题的函数图象,正方形的性质,三角形的面积,利用数形联合、分类议论是解题的重点3(2015?甘肃武威,第10题3分)如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B、C都不重合),现将PCD沿直线PD

5、折叠,使点C落到点F处;过点P作BPF的角平分线交AB于点E设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大概是()ABCD考点:动点问题的函数图象解析:证明BPECDP,根据相像三角形的对应边的比相等求得y与x的函数关系式,根据函数的性质即可作出判断解答:解:CPD=FPD,BPE=FPE,又CPD+FPD+BPE+FPE=180,CPD+BPE=90,又直角BPE中,BPE+BEP=90,BEP=CPD,又B=C,BPECDP,即,则y=x2+,y是x的二次函数,且开口向下应选C点评:本题考察了动点问题的函数图象,求函数的解析式,就是把自变量看作已知数值,然后求函数变量y

6、的值,即求线段长的问题,正确证明BPECDP是重点4(2015?四川资阳,第8题3分)如图4,AD、BC是O的两条互相垂直的直径,点P从点O出发,沿OCDO的路线匀速运动,设APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是考点:动点问题的函数图象.解析:根据图示,分三种情况:(1)当点P沿OC运动时;(2)当点P沿CD运动时;(3)当点P沿DO运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可解答:解:(1)当点P沿OC运动时,当点P在点O的地点时,y=90,当点P在点C的地点时,OA=OC,y=45,y由9045渐渐减小到;(2

7、)当点P沿CD运动时,根据圆周角定理,可得y902=45;3)当点P沿DO运动时,当点P在点D的地点时,y=45,当点P在点0的地点时,y=90,y由45渐渐增加到90应选:B点评:(1)本题主要考察了动点问题的函数图象,解答此类问题的重点是经过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图2)本题还考察了圆周角定理的应用,要娴熟掌握,解答本题的重点是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等5.(2015?四川省内江市,第11题,3分)如图,正方形ABCD的面积为12,ABE是等边三角形,点E在正方形ABCD内,在对角

8、线AC上有一点P,使PD+PE最小,则这个最小值为()AB2C2D考点:轴对称最短路线问题;正方形的性质.解析:由于点B与D对于AC对称,所以BE与AC的交点即为P点此时PD+PE=BE最小,而BE是等边ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果解答:解:由题意,可得BE与AC交于点P点B与D对于AC对称,PD=PB,PD+PE=PB+PE=BE最小正方形ABCD的面积为12,AB=2又ABE是等边三角形,BE=AB=2故所求最小值为2应选B点评:本题考察了轴对称最短路线问题,正方形的性质,等边三角形的性质,找到点P的地点是解决问题的重点6.(2015?

9、山东威海,第11题3分)如图,已知ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DEAC,交BC于E点;过E点作EFDE,交AB的延伸线于F点设AD=x,DEF的面积为y,则能大概反应y与x函数关系的图象是()ABCD考点:动点问题的函数图象.解析:根据平行线的性质可得EDC=B=60,根据三角形内角和定理即可求得F=30,然后证得EDC是等边三角形,进而求得ED=DC=2x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判断解答:解:ABC是等边三角形,B=60,DEAB,EDC=B=60,EFDE,DEF=90,F=90EDC=

10、30;ACB=60,EDC=60,EDC是等边三角形ED=DC=2x,DEF=90,F=30,EF=ED=(2x)y=ED?EF=(2x)?(2x),即y=(x2)2,(x2),应选A点评:本题考察了等边三角形的判断与性质,以及直角三角形的性质,特殊角的三角函数、三角形的面积等(2015山东省德州市,11,3分)如图,AD是ABC的角平分线,DE,DF分别是ABD和ACD的高,获得下面四个结论:OA=OD;ADEF;当A=90时,四边形AEDF是正方形;AE2+DF2=AF2+DE2.其中正确的选项是()A.B.C.第11题图【答案】D考点:角平分线的性质;正方形的判断方法;全等三角形的判断、

11、勾股定理考点:几何动向问题函数图象二.填空题1.2015?163rO正方形和圆用相同速度匀速转动一周,用时分别为t1、t2、t3,则t1、t2、t3的大小关系为t2t3t1考点:轨迹.解析:根据面积,可得相应的周长,根据有理数的大小比较,可得答案解答:解:设面积相等的等边三角形、正方形和圆的面积为3.14,等边三角型的边长为a2,等边三角形的周长为6;正方形的边长为b1.7,正方形的周长为1.74=6.8;圆的周长为3.1421=6.28,6.86.286,t2t3t1故答案为:t2t3t1点评:本题考察了轨迹,利用相等的面积求出相应的周长是解题重点三.解答题1.(2015?四川甘孜、阿坝,第

12、28题12分)如图,已知抛物线y=ax25ax+2(a0)与y轴交于点C,与x轴交于点A(1,0)和点B1)求抛物线的解析式;2)求直线BC的解析式;3)若点N是抛物线上的动点,过点N作NHx轴,垂足为H,以B,N,H为极点的三角形是否能够与OBC相像?若能,恳求出所有吻合条件的点N的坐标;若不能,请说明原因考点:二次函数综合题.解析:(1)把点A坐标代入抛物线y=ax25ax+2(a0)求得抛物线的解析式即可;(2)求出抛物线的对称轴,再求得点B、C坐标,设直线BC的解析式为y=kx+b,再把B、C两点坐标代入线BC的解析式为y=kx+b,求得k和b即可;(3)设N(x,ax25ax+2),

13、分两种情况议论:OBCHNB,OBCHBN,根据相像,得出比率式,再分别求得点N坐标即可解答:解:(1)点A(1,0)在抛物线y=ax25ax+2(a0)上,a5a+2=0,a=,抛物线的解析式为y=x2x+2;(2)抛物线的对称轴为直线x=,点B(4,0),C(0,2),设直线BC的解析式为y=kx+b,把B、C两点坐标代入线BC的解析式为y=kx+b,得,解得k=,b=2,直线BC的解析式y=x+2;3)设N(x,x2x+2),分两种情况议论:当OBCHNB时,如图1,即=,解得x1=5,x2=4(不合题意,舍去),点N坐标(5,2);当OBCHBN时,如图2,即=,解得x1=2,x2=4

14、(不合题意舍去),点N坐标(2,1);综上所述点N坐标(5,2)或(2,1)点评:本题考察了二次函数的综合题,以及二次函数解析式和一次函数的解析式确实定以及三角形的相像,解答本题需要较强的综合作答能力,特别是作答(3)问时需要进行分类,这是同学们容易忽略的地方,本题难度较大2.(2015?山东威海,第25题12分)已知:抛物线l1:y=x2+bx+3交x轴于点A,B,(点A在点B的左侧),交y轴于点C,其对称轴为x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,)(1)求抛物线l2的函数表达式;(2)P为直线x=1上一动点,连结PA,PC,当PA=PC时,求点P的

15、坐标;(3)M为抛物线l2上一动点,过点M作直线MNy轴,交抛物线l1于点N,求点M自点A运动至点E的过程中,线段MN长度的最大值考点:二次函数综合题.解析:(1)由对称轴可求得b,可求得l1的解析式,令y=0可求得A点坐标,再利用待定系数法可求得l2的表达式;(2)设P点坐标为(1,y),由勾股定理可表示出PC2和PA2,由条件可获得对于y的方程可求得y,可求得P点坐标;(3)可分别设出M、N的坐标,可表示出MN,再根据函数的性质可求得MN的最大值1抛物线l1:y=x2解答:解:()+bx+3的对称轴为x=1,=1,解得b=2,抛物线l1的解析式为y=x2+2x+3,令y=0,可得x2+2x

16、+3=0,解得x=1或x=3,A点坐标为(1,0),抛物线l2经过点A、E两点,可设抛物线l2解析式为y=a(x+1)(x5),又抛物线l2交y轴于点D(0,),=5a,解得a=,y=(x+1)(x5)=x22x,抛物线l2的函数表达式为y=x22x;2)设P点坐标为(1,y),由(1)可得C点坐标为(0,3),PC2=12+(y3)2=y26y+10,PA2=1(1)2+y2=y2+4,PC=PA,26y+10=y2,解得y=1,y+4P点坐标为(1,1);(3)由题意可设M(x,x22x),MNy轴,N(x,x2+2x+3),x22x令x2+2x+3=x22x,可解得x=1或x=,当1x时

17、,MN=(x2+2x+3)(x22x)=x2+4x+=(x)2+,显然1,当x=时,MN有最大值;当x5时,MN=(2222,x2x)(x+2x+3)=x4x=(x)显然当x时,MN随x的增大而增大,当x=5时,MN有最大值,52=12;()综上可知在点M自点A运动至点E的过程中,线段MN长度的最大值为12点评:本题主要考察二次函数的综合应用,波及待定系数法、二次函数的性质、勾股定理等知识点在(1)中求得A点的坐标是解题的重点,在(2)中用P点的坐标分别表示出PA、PC是解题的重点,在(3)中用M、N的坐标分别表示出MN的长是解题的重点,注意分类议论本题考察知识点较为基础,难度适中3.(201

18、5?山东日照,第22题14分)如图,抛物线y=2x+mx+n与直线y=x+3交于A,B两点,交x轴与D,C两点,连结AC,BC,已知A(0,3),C(3,0)()求抛物线的解析式和tanBAC的值;()在()条件下:(1)P为y轴右侧抛物线上一动点,连结PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为极点的三角形与ACB相像?若存在,恳求出所有吻合条件的点P的坐标;若不存在,请说明原因(2)设E为线段AC上一点(不含端点),连结DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运

19、动中用时最少?考点:二次函数综合题;线段的性质:两点之间线段最短;矩形的判断与性质;轴对称的性质;相像三角形的判断与性质;锐角三角函数的定义.专题:压轴题解析:()只要把A、C两点的坐标代入y=x2+mx+n,便可获得抛物线的解析式,然后求出直线AB与抛物线的交点BCH=ACO=45,BC=便可求出tanBAC的值;B的坐标,过点B作BHx轴于H,如图1易得,AC=3,进而获得ACB=90,然后根据三角函数的定义()(1)过点P作PGy轴于G,则PGA=90设点P的横坐标为x,由P在y轴右侧可得x0,则PG=x,易得APQ=ACB=90若点G在点A的下方,当PAQ=CAB时,PAQCAB此时可

20、证得PGABCA,根据相像三角形的性质可得AG=3PG=3x则有P(x,33x),然后把P(x,33x)代入抛物线的解析式,便可求出点P的坐标当PAQ=CBA时,PAQCBA,同理,可求出点P的坐标;若点G在点A的上方,同理,可求出点P的坐标;(2)过点E作ENy轴于N,如图3易得AE=EN,则点M在整个运动中所用的时间可表示为+=DE+EN作点D对于AC的对称点D,连结DE,则有DE=DE,DC=DC,DCA=DCA=45,进而可得DCD=90,DE+EN=DE+EN根据两点之间线段最短可得:当D、E、N三点共线时,DE+EN=DE+EN最小此时可证到四边形OCDN是矩形,进而有ND=OC=

21、3,ON=DC=DC然后求出点D的坐标,进而获得OD、ON、NE的值,即可获得点E的坐标解答:解:()把A(0,3),C(3,0)代入y=x2+mx+n,得,解得:抛物线的解析式为y=x2x+3联立,解得:或,点B的坐标为(4,1)过点B作BHx轴于H,如图1C(3,0),B(4,1),BH=1,OC=3,OH=4,CH=43=1,BH=CH=1BHC=90,BCH=45,BC=同理:ACO=45,AC=3,ACB=1804545=90,tanBAC=;()(1)存在点P,使得以A,P,Q为极点的三角形与ACB相像过点P作PGy轴于G,则PGA=90设点P的横坐标为x,由P在y轴右侧可得x0,

22、则PG=xPQPA,ACB=90,APQ=ACB=90若点G在点A的下方,如图2,当PAQ=CAB时,则PAQCABPGA=ACB=90,PAQ=CAB,PGABCA,=AG=3PG=3x则P(x,33x)把P(x,33x)代入y=x2x+3,得x2x+3=33x,整理得:x2+x=0解得:x1=0(舍去),x2=1(舍去)如图2,当PAQ=CBA时,则PAQCBA同理可得:AG=PG=x,则P(x,3x),把P(x,3x)代入y=x2x+3,得x2x+3=3x,整理得:x2x=0解得:x1=0(舍去),x2=,P(,);若点G在点A的上方,当PAQ=CAB时,则PAQCAB,同理可得:点P的

23、坐标为(11,36)当PAQ=CBA时,则PAQCBA同理可得:点P的坐标为P(,)综上所述:知足条件的点P的坐标为(11,36)、(,)、(,);(2)过点E作ENy轴于N,如图3在RtANE中,EN=AE?sin45=AE,即AE=EN,点M在整个运动中所用的时间为+=DE+EN作点D对于AC的对称点D,连结DE,则有DE=DE,DC=DC,DCA=DCA=45,DCD=90,DE+EN=DE+EN根据两点之间线段最短可得:当D、E、N三点共线时,DE+EN=DE+EN最小此时,DCD=DNO=NOC=90,四边形OCDN是矩形,ND=OC=3,ON=DC=DC对于y=x2x+3,当y=0

24、时,有x2x+3=0,解得:x1=2,x2=3D(2,0),OD=2,ON=DC=OCOD=32=1,NE=AN=AOON=31=2,点E的坐标为(2,1)点评:本题主要考察了运用待定系数法求抛物线的解析式、求直线与抛物线的交点坐标、抛物线上点的坐标特点、三角函数的定义、相像三角形的判断与性质、解一元二次方程、两点之间线段最短、轴对称的性质、矩形的判断与性质、勾股定理等知识,综合性强,难度大,正确分类是解决第()(1)小题的重点,把点M运动的总时间+转变为DE+EN是解决第()(2)小题的重点4.(2015?山东聊城,第25题12分)如图,在直角坐标系中,RtOAB的直角极点A在x轴上,OA=

25、4,AB=3动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动当两个动点运动了x秒(0 x4)时,解答下列问题:(1)求点N的坐标(用含x的代数式表示);(2)设OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?(3)在两个动点运动过程中,是否存在某一时刻,使OMN是直角三角形?若存在,求出的值;若不存在,请说明原因考点:相像形综合题.解析:(1)由勾股定理求出OB,作NPOA于P,则NPAB,得出OPNOAB,得出比率式,求出OP、PN,即可得出点N的坐标;(2)由三角形的面

26、积公式得出S是x的二次函数,即可得出S的最大值;3)分两种情况:若OMN=90,则MNAB,由平行线得出OMNOAB,得出比率式,即可求出x的值;若ONM=90,则ONM=OAB,证出OMNOBA,得出比率式,求出x的值即可解答:解:(1)根据题意得:MA=x,ON=1.25x,在RtOAB中,由勾股定理得:OB=5,作NPOA于P,如图1所示:则NPAB,OPNOAB,即,解得:OP=x,PN=,点N的坐标是(x,);(2)在OMN中,OM=4x,OM边上的高PN=,S=OM?PN=(4x)?=x2+x,S与x之间的函数表达式为S=x2+x(0 x4),2,配方得:S=(x2)+0,S有最大

27、值,当x=2时,S有最大值,最大值是;3)存在某一时刻,使OMN是直角三角形,原因如下:分两种情况:若OMN=90,如图2所示:则MNAB,此时OM=4x,ON=1.25x,MNAB,OMNOAB,即,解得:x=2;若ONM=90,如图3所示:则ONM=OAB,此时OM=4x,ON=1.25x,ONM=OAB,MON=BOA,OMNOBA,即,解得:x=;综上所述:x的值是2秒或秒点评:本题是相像形综合题目,考察了相像三角形的判断与性质、勾股定理、坐标与图形特征、直角三角形的性质、三角形面积的计算、求二次函数的解析式以及最值等知识;本题难度较大,综合性强,特别是(3)中,需要进行分类议论,经过

28、证明三角形相像才能得出结果5(2015圳,第深22题分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,ABBC三角板以2cm/s的速度向右移动。6cm,OD3cm,开始的时候BD=1cm,现在1)当B与O重合的时候,求三角板运动的时间;2)如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:CF2CGCE。【解析】6(2015河南,第17题9分)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延伸BP到点C,使PC=PB,D是AC的中点,连结PD,PO.(1)求证:CDPPOB;(2)填空:若AB=4,则四边形A

29、OPD的最大面积为;连结OD,当PBA的度数为时,四边形BPDO是菱形.C(1)【解析】要CDPPOB,已知有一相等,合已知条件易得PDP是ACB的中位,而可得出一角和一相等,根据DSAS即可得.解:点D是AC的中点,PC=PB,(3分)DPDB,DP1AB,CPD=PBO.OB2AOB第17题1AB,DP=OB,CDPPOB(SAS).(5分)2CPDAOB第17解(2)【解析】易得四形AOPD是平行四形,由于AO最大,就得使四形AOPD底AO上的高最大,即当是定,要使四形AOPD的面OPOA面最大;易得四形BPDO是平行四形,再根据菱形的判断获得PBO是等三角形即可求解.解:4;(7分)6

30、0.(注:若填60,不扣分)(9分)【解法提示】当OPOA四形AOPD的面最大,由(1)得DP=AO,DPDB,四形AOPD是平行四形,AB=4,AO=PO=2,四形AOPD的面最大,22=4;接OD,由(1)得DP=AO=OB,DPDB,四形BPDO是平行四形,当OB=BP四形BPDO是菱形,PO=BO,PBO是等三角形,PBA=60.7.(2015?四川成都,第2812分)如,在平面直角坐系xOy中,抛物yax22ax3a(a0)与x交于A、B两点(点A在点B的左),点A的直l:ykxb与y半交于点C,与抛物的另一个交点D,且CD4AC(1)直接写出点A的坐,并求直l的函数表达式(其中k、

31、b用含a的式子表示);(2)点E是直l上方的抛物上的点,若ACE的面的最大5,求a的;4(3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为极点的四边形可否成为矩形?若能,求出点P的坐标;若不能,请说明原因y【答案】:(1)A(1,0),yaxa;E2(2)a5;OxAB(3)P的坐标为(267C1,7)或(1,4)【解析】:Dl(1)A(1,0)直线l经过点A,0kb,bkykxk令ax22ax3akxk,即ax2(2ak)x3ak0CD4AC,点D的横坐标为4k3a14,ka直线l的函数表达式为yaxa(2)过点E作EFy轴,交直线l于点F设E(x,ax22ax3a),

32、则F(x,axa)EFax22ax3a(axa)ax23ax4aSACESAFESCFE112(ax23ax4a)(x1)2(ax23ax4a)x12132252(ax3ax4a)2a(x2)8aACE的面积的最大值为258aACE的面积的最大值为5425528a4,解得a53)令ax22ax3aaxa,即ax23ax4a0解得x11,x24D(4,5a)yax22ax3a,抛物线的对称轴为x1yOxABCDly备用图EOxACBFDlyOxACBDl设P(1,m)若AD是矩形的一条边,则Q(4,21a)m21a5a26a,则P(1,26a)四边形ADPQ为矩形,ADP90AD2PD2AP25

33、2(5a)2(14)2(26a5a)2(11)2(26a)217即a27,a0,a7P1(1,2677)若AD是矩形的一条对角线y35aQ则线段AD的中点坐标为(2,2),Q(2,3a)m5a(3a)8a,则P(1,8a)OACBx四边形APDQ为矩形,APD90AP2PD2AD2Dl(11)2(8a)2(14)2(8a5a)252(5a)2P11即a24,a0,a2P2(1,4)综上所述,以点A、D、P、Q为极点的四边形能成为矩形267点P的坐标为(1,7)或(1,4)8.(2015辽宁大连,26,12分)如图,在平面直角坐标系中,矩形OABC的极点A,C分别在x轴和y轴的正半轴上,极点B的

34、坐标为(2m,m),翻折矩形OABC,使点A与点C重合,获得折痕DE.设点B的对应点为F,折痕DE所在直线与y轴相交于点G,经过点C、F、D的抛物线为yax2bxc。1)求点D的坐标(用含m的式子表示)2)若点G的坐标为(0,3),求该抛物线的解析式。(3)在(2)的条件下,设线段CD的中点为M,在线段CD上方的抛物线上是否存在点1P,使PM=EA?若存在,直接写出P的坐标,若不存在,说明原因。2【答案】(1)(5m,m);(2)y5x225x2(3)存在,点P坐标为(1.6,3.2)和4612(0.9,3.2)。【解析】解:(1)设D的坐标为:(d,m),根据题意得:CD=d,OC=m(第2

35、6题图)因为CDEA,所以CDE=AED,又因为AED=CED,所以CDE=CED,所以CD=CE=EA=d,OE=2md,在RtCOE中,OC2OE2CE2,m22md2d2,解得:d5m。4所以D的坐标为:(5m,m)4作DH垂直于X轴,由题意得:OG=3,OE=OAEA=2m5m=3m.EH=OHOE=5m3m=1m,DH=m.44442OEOG3m34GOEDHE,HEHD,1。所以m=2mm2所以此时D点坐标为(5,2),CD=5,CF=2,FD=BD=45=1.5222因为CDFI=CFFD,FI=21.52.5=1.2CI=CF2FI2221.221.6,所以F的坐标为(1.6,

36、3.2)抛物线为yax2bxc经过点C、F、D,所以代入得:c2c256.25a2.5bc2解得:a1.62a1.6bc3.2625b12所以抛物线解析式为y5x225x2。123)存在,因为PM=1EA,所以PM=1CD.以M为圆心,MC为半径化圆,交抛物线于22点F和点P.如下列图:点P坐标为(1.6,3.2)和(0.9,3.2)。9.(2015?浙江省台州市,第23题)如图,在多边形ABCDE中,A=AED=D=90,AB=5,AE=2,ED=3,过点E作EFCB交AB于点F,FB=1,过AE上的点P作PQAB交线段EF于点O,交折线BCD于点Q,设AP=x,PO.OQ=y(1)延伸BC

37、交ED于点M,则MD=,DC=求y对于x的函数解析式;(2)当1时,9ay6b,求ax(a0),b的值;a2(3)当1y3时,请直接写出x的取值范围10.(2015?浙江湖州,第24题12分)在直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90获得线段BD,抛物线y=ax2+bx+c(a0)经过点D.(1)如图1,若该抛物线经过原点O,且a=.求点D的坐标及该抛物线的解析式.连结CD,问:在抛物线上是否存在点P,使得POB与BCD互余?若存在,恳求出所有知足条件的点P的坐标,若不

38、存在,请说明原因.(2)如图2,若该抛物线2在抛物线上,且知足QOBy=ax+bx+c(a0)经过点E(1,1),点Q与BCD互余,若吻合条件的Q点的个数是4个,请直接写出a的取值范围.【答案】(1)D(3,1),;在抛物线上存在点,使得POB与BCD互余.(2)a的取值范围是.【解析】试题解析:(1)过点D作DFx轴于点F,可证AOBBFD,即可求得D点的坐标,把a=,点D的坐标代入抛物线即可求抛物线的解析式.由C、D两点的纵坐标都为1可知CDx轴,所以BCD=ABO,又因BAO与BCD互余,若要使得POB与BCD互余,则需知足POB=BAO,设点P的坐标为(x,).分两种情况:第一种情况,

39、当点P在x轴上方时,过点P作PGx轴于点G,由tanPOB=tanBAO=可得,解得x的值后辈入求得的值即可得点P的坐标.第一种情况,当点P在x轴下方时,利用同样的方法可求点P的坐标.(2)抛物线y=ax2+bx+c过点E、D,代入可得,解得,所以,分两种情况:当抛物线y=ax2+bx+c开口向下时,知足QOB与BCD互余且吻合条件的Q点的个数是4个,点Q在x轴的上、下方各有两个,点Q在x轴的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上,与y轴的交点在y轴的负半轴,所以3a+10,解得a,当a吻合条件的点Q有两个,点Q在x轴

40、的上方时,直线OQ与抛物线y=ax2+bx+c有两个交点,吻合条件的点Q有两个.所以当a,抛物线y=ax2+bx+c(a0)经过点E(1,1),点Q在抛物线上,且知足QOB与BCD互余,若吻合条件的Q点的个数是4个;当抛物线y=ax2+bx+c开口向上时,知足QOB与BCD互余且吻合条件的Q点的个数是4个,点Q在x轴的上、下方各有两个,当点Q在x轴的上方时,直线2Q有两个.当OQ与抛物线y=ax+bx+c有两个交点,吻合条件的点点Q在x轴的下方时,直线OQ必须与抛物线y=ax2+bx+c有两个交点,吻合条件的点Q才有两个.由题意可求的直线OQ的解析式为,直线OQ与抛物线y=ax2+bx+c由两

41、个交点,所以,方程有两个不相等的实数根所以=,即,画出二次函数图象并察看可得的解集为或(不合题意舍去),所以当,在x轴的下方吻合条件的点Q有两个.所以当,抛物线y=ax2+bx+c(a0)经过点E(1,1),点Q在抛物线上,且知足QOB与BCD互余,若吻合条件的Q点的个数是4个.综上,当a或时,抛物线y=ax2+bx+c(a0)经过点E(1,1),点Q在抛物线上,且知足QOB与BCD互余,吻合条件的Q点的个数是4个.试题解析:解:(1)过点D作DFx轴于点F,如下列图.DBF+ABO=90,BAO+ABO=90,DBF=BAO,又AOB=BFD=90,AB=BD,AOBBFD,DF=BO=1,

42、BF=AO=2,D点的坐标是(3,1),根据题意得,该抛物线的解析式为.()当点P在x轴的上方时,过点则tanPOB=tanBAO,即,解得P作,PGx轴于点,G,,点P的坐标是.(2)a的取值范围是.考点:二次函数综合题.11.(2015?浙江金华,第23题10分)图1,图2为同一长方体房间的示意图,图2为该长方体的表面展开图.(1)蜘蛛在极点A处苍蝇在极点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的最近路线;苍蝇在极点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花板ABCD爬行的最近路线AGC和往墙面BBCC爬行的最近路线AHC,试经过计算判断哪条路线更近?(2)在图3中,半径为

43、10dm的M与DC相切,圆心M到边CC的距离为15dm,蜘蛛P在线段AB上,苍蝇Q在M的圆周上,线段PQ为蜘蛛爬行路线。若PQ与M相切,试求PQ的长度的范围.【答案】解:(1)如答图1,连结AB,线段AB就是所求作的最近路线.两种爬行路线如答图2所示,由题意可得:在RtACC2中,AHC2=AC2CC227023025800(dm);在RtABC1中,AGC1=AB2BC124026025200(dm)5800,路线AGC1更近.(2)如答图,连结MQ,PQ为M的切线,点Q为切点,MQPQ.2222在RtPQM中,有PQ=PMQM=PM100,当MPAB时,MP最短,PQ取得最小值,如答图3,

44、PQ=PM2QM2502102206(dm).当点P与点A重合时,MP最长,PQ取得最大值,如答图4,过点M作MNAB,垂足为N,由题意可得PN=25,MN=50,在RtPMN中,PM2AN2MN2252502.在RtPQM中,PQ=PM2QM225250210255(dm).综上所述,PQ长度的取值范围是206dmPQ55dm.【考点】长方体的表面展开图;双动点问题;线段、垂直线段最短的性质;直线与圆的地点关系;勾股定理.【解析】(1)根据两点之间线段最短的性质作答.根据勾股定理,计算两种爬行路线的长,比较即可获得结论.(2)当MPAB时,MP最短,PQ取得最小值;当点P与点A重合时,MP最

45、长,PQ取得最大值.求出这两种情况时的PQ长即可得出结论.12、(2015?四川自贡,第23题12分)如图,已知抛物线yax2bxc(a0)的对称轴为x1,且抛物线经过A1,0,C0,3两点,与x轴交于点B.若直线ymxn经过B、C两点,求直线BC所在直线的解析式;.抛物线的对称轴x1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出此点M的坐标;.设点P为抛物线的对称轴x1上的一个动点,求使BPC为直角三角形的点P的坐标.考点:二次函数的性质、待定系数法求解析式、轴对称的性质、三角形三边之间关系、勾股定理及其逆定理、分类议论的思想、解方程等.y解析:.B、C两点是抛物线yax2bxc

46、(a0)与坐标轴的交点,根据题中提供的对称轴和A1,0,C0,3能够确定抛物线的解析式,再经过抛物线的解析式可求出B、C两点的坐标,进一步可求出直线BC所在直线的解析式.要求点M到点A的距离与到点C的距离之和最小,重点是作出A或C对于直线x1为对称轴的对称点,根据二次函CMBOAx数图象及其性质,A对于直线x1的对称点恰巧是B;根据轴对称的性质和三角形三边之间的关系可知,此时M到点A的距离与到点C的距离之和即CMAM的值最小;M是直线x1和直线BC的交点,所以把x1代入问中求出的BC所在直线的解析式便可求出M的坐标.要使BPC为直角三角形有三种情况,即以点B为直角极点、以点C为直角极点、以点P

47、为直角极点的直角三角形;由于P为抛物线的对称轴x1上的一个动点,所以P的横坐标为1,我们能够设P的纵坐标为一个未知数,利用勾股定理(或许是平面直角坐标系中的两点间的距离公式)分别表示出BPC的三边,再以勾股定理的逆定理为依据,按上面所说的三种情况进行议论,成立方程解方程后P的纵坐标便可求出.y略解:Cb1M2aa1.根据题意:abc0解得:b2c3c3抛物线的解析式为yx22x3BOAx本抛物线的对称轴为x1,且抛物线过点A1,0把B3,0、C0.3分别代入ymxn得:3mn0解得:m1n3n3直线ymxn的解析式为yx3.设直线BC与对称轴x1的交点为M,则此时MAMC的值最小.把x1代入y

48、x3得:y2M1,2,即当点M到点A的距离与到点C的距离之和最小时M的.坐标为1,2.设p1,t,又B3,0,C0,3BC218,PB2132t2,PC2232t26t101t.若点B为直角极点,则BC2PB2PC2,即184t2t26t10解得:t2;.若点C为直角极点,则BC2PC2PB2,即18t26t104t2解得:t4;.若点P为直角极点,则PB2PC2BC2,即4t2t26t1018解得:317317t,t222综上所述P点的坐标为1,2或1,4或317或1,3171,2213、(2015?四川自贡,第24题14分)在ABC中,ABAC5,cosABC3,将ABC绕5点C顺时针旋转

49、,获得A1B1C.如图,当点B1在线段BA延伸线上时.求证:BB1PCA1;.求AB1C的面积;.如图,点E是BC上的中点,点F为线段AB上的动点,在ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.B1B1A1F1考点:旋转的特点、平行线的A判断、等腰三角形的性质、三角函数的定义、三角形的面积、A1A勾股定理、圆的基本性质等.F解析:BCBCE.见图要使BB1PCA1根据本题的条件能够经过这两线所截得内错角12来证得.如图根据ABAC能够得出BACB,根据旋转的特点能够得出B1CBC,所以1B,而2ACB(旋转角相等),所以12.求AB1C的面积能够把A

50、B1作为底边,其高在B1A的延伸线上,恰巧落在等腰三角形ABC的AB上;在等腰ABCBBC和1,根据等腰三角形的性质、三角函数以及勾股定理能够求出AB、BB1、CE,而AB1BB1AB,AB1C的面积能够经过1AB1CE求出.2.见图.C作CFABF点C到AB的垂线段最短,过点于F;点F点F的对应点是1,若以点C为圆心CF为半径画圆交BC于F1,EF1有最小值;根据的CAAB5和求出的BC6,当点F为线段AB上的移到端点A时CA最长,此时其对应点F移动到A1时CA1也就最长;如图,以点C为圆心BC为半径画圆交BC于的延伸线F1,EF1有最大值.EF1有最小值和最大值都能够利用同圆的半径相等在圆

51、的同一条直径上来获得解决(见图).2.略解:.证明:ABAC,B1CBCBACB,1B2ACB(旋转角相等)12BB1PCA1.过A作AFBC于F,过C作CEAB于EABAC,AFBCBFCF(三线合一)在RtAFB中,cosABCBF3B1AB,又AB55A1BF3A1EBC62B1CBC6BCF作CEAB后BEB1E(三线合一)B1B2BE在RtAFB中,cosBECBE3BC5BE185C36BB152CE62-18=24(注:也能够用三角函数求出)5536511AB155AB1C的面积为:1112413225525.如图过点C作CFAB于F,以点C为圆心CF为半径画圆交BC于F1,EF

52、1有最小值.此时在RtBFC中,CF24.524CF15EF1的最小值为CFCE249;35F1F15如图,以点C为圆心BC为半径画圆交BC于的延伸线F1,EF1有最大值.此时EF1ECCF1369936线段EF1的最大值与最小值的差9.5514(2015?广东省,第25题,9分)如图,在同一平面上,两块斜边相等的直角三角板RtABC与RtADC拼在一同,使斜边AC完全重合,且极点B,D分别在AC的两旁,ABC=ADC=90,CAD=30,AB=BC=4cm.(1)填空:AD=(cm),DC=(cm);(2)点M,N分别从A点,C点同时以每秒1cm的速度等速出发,且分别在AD,CB上沿AD,CB的方向运动,当N点运动到B点时,M,N两点同时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论