光纤芯、激光器、海缆20111021_第1页
光纤芯、激光器、海缆20111021_第2页
光纤芯、激光器、海缆20111021_第3页
光纤芯、激光器、海缆20111021_第4页
光纤芯、激光器、海缆20111021_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、光纤的颜色排序(8芯、12芯):光纤颜色排序:12芯:蓝、橙、绿、棕、灰、白、红、黑、黄、紫、粉、青8芯:橙、绿、棕、灰、白、红、黑、黄6芯:蓝、橙、绿、棕、灰、白(橙、绿、棕、灰、白、红)4芯:蓝、橙、绿、棕(绿、白、红、黄)8芯光缆是内置有8根光纤(成分是二氧化硅,石英玻璃)的通讯线缆。拥有多种结构型号以及两种传输模式,是利用比较广泛的通讯光缆。在结构上8芯光缆主要分为室外和室内两种结构类型。室外芯的主要有中心束管式和层绞式两种类型,一般较为常用的是层绞式,因为层绞式容纳的芯数较为大,而且保护性能相对中心束管式的要好一些。(中心束管式是以光纤位于光缆中心,采用没膏填充、双钢丝外加强的结构;

2、层绞式则是以光纤围绕中心加强件的一种形式的结构。)室内型的则主要以束状式的结构为主(型号是GJFJV)在型号选型方面8芯光缆主要以室外和室内两种类型的型号,室外的有GYXTW,GYTS,GYTA,GYTA53;室内的有GJFJV。1、GYXTW:中心束管式带铠结构,可以容纳4-12芯,适用于架空的敷设。2、GYTS:层绞式带铠结构,可以容纳4-144芯,适用于埋地和管道的敷设。(埋地时需要套上一层PVC管)2、GYTA:层绞式带铝结构,可以容纳4-144芯,适用于埋地和管道的敷设。(埋地时需要套上一层PVC管)3、GYTS:层绞式带铠结构,可以容纳4-144芯,适用于埋地和管道的敷设。(埋地时

3、需要套上一层PVC管)12芯光缆是内置有12根光纤(成分是二氧化硅,石英玻璃)的通讯线缆。拥有多种结构型号以及两种传输模式,是利用比较广泛的通讯光缆。12芯光缆中心束管式结构12芯光缆层绞式结构复用技术:复用技术是指一种在传输路径上综合多路信道,然后恢复原机制或解除终端各信道复用技术的过程。分为时分、波分、频分、和码分四种技术。频分复用(FDM)载波带宽被划分为多种不同频带的子信道,每个子信道可以并行传送一路信号。FDM用于模拟传输过程。传统的频分复用传统的频分复用典型的应用莫过于广电HFC网络电视信号的传输了,不管是模拟电视信号还是数字电视信号都是如此,因为对于数字电视信号而言,尽管在每一个

4、频道(8MHz)以内是时分复用传输的,但各个频道之间仍然是以频分复用的方式传输的。正交频分复用OFDM(OrthogonalFrequencyDivisionMultiplexing)实际是一种多载波数字调制技术。OFDM全部载波频率有相等的频率间隔,它们是一个基本振荡频率的整数倍,正交指各个载波的信号频谱是正交的。OFDM系统比FDM系统要求的带宽要小得多。由于OFDM使用无干扰正交载波技术,单个载波间无需保护频带,这样使得可用频谱的使用效率更高。另外,OFDM技术可动态分配在子信道中的数据,为获得最大的数据吞吐量,多载波调制器可以智能地分配更多的数据到噪声小的子信道上。目前OFDM技术已被

5、广泛应用于广播式的音频和视频领域以及民用通信系统中,主要的应用包括:非对称的数字用户环线(ADSL)、数字视频广播(DVB)、高清晰度电视(HDTV)、无线局域网(WLAN)和第4代(4G)移动通信系统等。时分复用(TDM)在交互时间间隔内在同一信道上传送多路信号。TDM广泛用于数字传输过程。码分复用(CDM)每个信道作为编码信道实现位传输(特定脉冲序列)这种编码传输方式通过传输唯一的时间系列短脉冲完成,但在较长的位时间中则采用时间片断替代。每个信道,都有各自的代码,并可以在同一光纤上进行传输以及异步解除复用。波分复用(WDM)在一根光纤上使用不同的波长同时传送多路光波信号。WDM用于光纤信道

6、。WDM与FDM基于相同原理但是它应用于光纤信道上的光波传输过程。粗波分复用(CWDM)WDM的扩张。每根光纤传送4到8种波长,甚至更多。应用于中型网络系统(区域或城域网)密集型波分复用(DWDM)WDM的扩展。典型的DWDM系统支持8种或以上波长。显现系统支持上百种波长。在数据通信中,复用技术的使用极大地提高了信道的传输效率,取得了广泛地应用。多路复用技术就是在发送端将多路信号进行组合(如广电前端使用的混合器),然后在一条专用的物理信道上实现传输,接收端再将复合信号分离出来。多路复用技术主要分为两大类:频分多路复用(简称频分复用)和时分多路复用(简称时分复用),波分复用和统计复用本质上也属于

7、这两种复用技术。另外还有一些其他的复用技术,如码分复用、极化波复用和空分复用等。1310nm和1550nm波长的波分复用这种复用技术在20世纪70年代初时仅用两个波长:1310nm窗口一个波长,1550nm窗口一个波长,利用WDM技术实现单纤双窗口传输,这是最初的波分复用的使用情况。粗波分复用继在骨干网及长途网络中应用后,波分复用技术也开始在城域网中得到使用,主要指的是粗波分复用技术。CWDM使用12001700nm的宽窗口,目前主要应用波长在1550nm的系统中,当然1310nm波长的波分复用器也在研制之中。粗波分复用(大波长间隔)器相邻信道的间距一般220nm,它的波长数目一般为4波或8波

8、,最多16波。当复用的信道数为16或者更少时,由于CWDM系统采用的DFB激光器不需要冷却,在成本、功耗要求和设备尺寸方面,CWDM系统比DWDM系统更有优势,CWDM越来越广泛地被业界所接受。CWDM无需选择成本昂贵的密集波分解复用器和“光放”EDFA,只需采用便宜的多通道激光收发器作为中继,因而成本大大下降。如今,不少厂家已经能够提供具有28个波长的商用CWDM系统,它适合在地理范围不是特别大、数据业务发展不是非常快的城市使用。密集波分复用密集波分复用技术(DWDM)可以承载8160个波长,而且随着DWDM技术的不断发展,其分波波数的上限值仍在不断地增长,间隔一般W1.6nm,主要应用于长

9、距离传输系统。在所有的DWDM系统中都需要色散补偿技术(克服多波长系统中的非线性失真一一四波混频现象)。在16波DWDM系统中,一般采用常规色散补偿光纤来进行补偿,而在40波DWDM系统中,必须采用色散斜率补偿光纤补偿。DWDM能够在同一根光纤中把不同的波长同时进行组合和传输,为了保证有效传输,一根光纤转换为多根虚拟光纤。目前,采用DWDM技术,单根光纤可以传输的数据流量高达400Gbit/s,随着厂商在每根光纤中加入更多信道,每秒太位的传输速度指日可待。3.1310、1550波长在G.652光纤中的传输特点:1310nm波长的光在G.652光纤上传输时,决定其传输距离限制的是衰减因数;因为在

10、1310nm波长下,光纤的材料色散与结构色散相互抵消总的色散为0,在1310nm波长上有微小振幅的光信号能够实现宽频带传输。1550nm波长的光在G.652光纤上传输时衰减因数很小,单纯从衰减因数考虑,1550nm波长的光在相同的光功率下传输的距离大于1310nm波长的光下的传输的距离,但是实际情况并非如此,单模光纤带宽B与色散因数D的关系为:B=132.5/(Dl*D*L)GHz其中L为光纤的长度,Dl为谱线宽度,对于1550nm波长的光,其色散因数如表3为20ps/(nm.km),假设其光谱宽度等于1nm,传输距离为L=50公里,则有:B=132.5/(D*L)GHz=132.5MHz也就

11、是说,对于模拟波形,采用1550nm波长的光,当传输距离为50公里时,传输带宽已经小于132.5MHz,如果基带传输频率F为150MHz,那么传输距离已经小于50km,况且实际应用中,光源的谱线宽度往往大于1nm。从上式可以看出,1550nm波长的光在G.652光纤上传输时决定其传输距离限制的主要是色散因数。4半导体激光器、LED激光器、窄宽线激光器的分类、材料、性能、特点:(1)半导体激光器的分类:半导体激光器特点:半导体激光器激光器优点是体积小,重量轻,运转可靠,耗电少,效率高等特点。半导体激光器是以一定的半导体材料做工作物质而产生受激发射作用的器件.其工作原理是,通过一定的激励方式,在半

12、导体物质的能带(导带与价带)之间,或者半导体物质的能带与杂质(受主或施主)能级之间,实现非平衡载流子的粒子数反转,当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用.半导体激光器的激励方式主要有三种,即电注入式,光泵式和高能电子束激励式.电注入式半导体激光器,一般是由GaAS(砷镓),InAS(砷化铟),Insb(锑化铟)等材料制成的半导体面结型二极管,沿正向偏压注入电流进行激励,在结平面区域产生受激发射光泵式半导体激光器,一般用N型或P型半导体(GaAS,InAs,InSb等)做工作物质,以其他激光器发出的激光作光泵激励.高能电子束激励式半导体激光器,一般也是用N型或者P型半导体

13、单晶(如PbS,CdS,ZhO等)做工作物质,通过由外部注入高能电子束进行激励.在半导体激光器件中,目前性能较好,应用较广的是具有双异质结构的电注入式GaAs二极管激光器.(2)LED(3)所谓窄线宽激光器,就是通过可调滤波器、FB滤波器、Bragg光栅等波长选择器对增益谱内起振的纵模数进行限制,只让满足特定条件的少数几个纵模,甚至只有一个纵模发生激光振荡。窄线宽光纤激光器的输出光具有极高的时间相干性和极低的相位噪声,使得其在高分辨干涉仪、相干通信、光纤传感和激光雷达等领域具有重要的应用。窄线宽光纤激光器主要应用领域1、石油管道预警系统:利用与管道同沟敷设的通信光缆作为分布式土壤振动检测传感器

14、,长距离连续实时监测油气管道沿线的土壤振动情况,在管道沿线4米范围内形成保护带,采用系统独有的管道破坏事件专家数据库和神经网络分析识别技术,对可能危害管道安全的动土事件(如:机械施工和打孔盗油等破坏事件)或场站设施的入侵事件进行预警,并准确定位。2、光纤周界预警:利用激光、光纤传感和光通信等高科技技术构建的警戒网络或者安全报警系统,是一种对威胁公众安全的突发事件进行监控和警报的现代防御体系。这既反映了现代反恐斗争的需要,也满足了我国现阶段对周界报警的需求。尤其在大型场所如军事禁区、核基地、机场等等,都需要这种很先进的防入侵报警系统。3、声学传感、水听器:干涉型光纤水声光纤传感器阵列在水下军事应

15、用、鱼群探测和保密监听等方面有很大的应用前景,并以极高的灵敏度、抗电磁干扰、无源检测等优越性而引起了世界各国的高度重视,为下一代水听器的研究开发和应用的主要方向之一。4、激光雷达、测距、遥感:基于FMCW和多普勒频移,可以实现激光连续波的测距和雷达,其超长的相干距离提供了长距离的遥感方案。5、相干光通信:窄线宽光纤激光的线宽仅为目前商用通信光源线宽的百万分之一,这大大减少信道的宽度和信道之间的间距,仅在C波段就可以将光纤通信的信道数提高几个数量级,此外,窄线宽激光极窄的线宽减小了传输过程中光纤的色散,更有利于远距离传输。6、激光光谱学、大气吸收测量:可以用来研究谱线的精细和超精细分裂、塞曼和斯塔克分裂、光位移、碰撞加宽、碰撞位移等效应。还可以利用激光观察到有趣的相干瞬变现象7、激光种子源:可以耦合进光纤放大器,形成更大输出功率的单频激光器如1W或5W而不会改变种源的光学特性5海底光电复合缆的深海、浅海特点和25KV35KV110KV220KV的特点:海底光缆设计必须保证光纤不受外力和环境影响,其基本要求是:能适应海底压力、磨损、腐蚀、生物等环境;有合适的铠装层防止渔轮拖网、船锚及鲨鱼的伤害;光缆断裂时,尽可能减少海水渗入光缆内的长度;能防止从外部渗透到光缆内的氢气与防止内部产生的氢气;具有一个低电阻的远供电回路;能承受敷设与回收时的张力;使用寿命

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论