2023届上海市静安区、青浦区数学九上期末综合测试模拟试题含解析_第1页
2023届上海市静安区、青浦区数学九上期末综合测试模拟试题含解析_第2页
2023届上海市静安区、青浦区数学九上期末综合测试模拟试题含解析_第3页
2023届上海市静安区、青浦区数学九上期末综合测试模拟试题含解析_第4页
2023届上海市静安区、青浦区数学九上期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是()ABCD2如图,P为平行四边形ABCD的对称中心,以P为圆心作圆,过P的任意直线与圆相交于点M,N则线段BM,DN的大小关系是()ABMDNBBMDNCB

2、M=DND无法确定3如图,这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,则这个花坛的周长(实线部分)为()A4米B米C3米D2米4如图,正方形ABCD的边长为3,点E、F分别在边BC、CD上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知BE1,则EF的长为( )ABCD35如图示,二次函数的图像与轴交于坐标原点和,若关于的方程(为实数)在的范围内有解,则的取值范围是( )ABCD6某超市花费1140元购进苹果100千克,销售中有的正常损耗,为避免亏本(其它费用不考虑),售价至少定为多少元/千克?设售价为元/千克,根据题意所列不等

3、式正确的是( )ABCD7如图,为线段上一动点(点不与点、重合),在线段的同侧分别作等边和等边,连结、,交点为若,求动点运动路径的长为( )ABCD8如图,以点O为位似中心,将ABC放大后得到DEF,已知ABC与DEF的面积比为1:9,则OC:CF的值为()A1:2B1:3C1:8D1:99如图,已知小明、小颖之间的距离为3.6m,他们在同一盏路灯下的影长分别为1.8m,1.6m,已知小明、小颖的身高分别为1.8m,1.6m,则路灯的高为()A3.4mB3.5mC3.6mD3.7m10宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感我们可以

4、用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GHAD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A矩形ABFEB矩形EFCDC矩形EFGHD矩形DCGH11如图,AB是O的直径,C是O上一点(A、B除外),BOD44,则C的度数是()A44B22C46D3612如图,在由边长为1的小正方形组成的网格中,点,都在格点上,点在的延长线上,以为圆心,为半径画弧,交的延长线于点,且弧经过点,则扇形的面积为( )ABCD二、填空题(每题4分,共24分)13已知关于x的方程x2+3x+a0有一个根为

5、2,则另一个根为_14已知扇形的圆心角为120,弧长为6,则它的半径为_15在等腰ABC中,ABAC4,BC6,那么cosB的值_16两个函数和(abc0)的图象如图所示,请直接写出关于x的不等式的解集_17在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为12m,那么这栋建筑物的高度为_m.18如图所示的五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为_;三、解答题(共78分)19(8分)如图,矩形中,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点.当旋转至处时,的旋转随即停止.(1)特殊情形:如图,发现当过点时,也恰好过点,此时是

6、否与相似?并说明理由;(2)类比探究:如图,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由;(3)拓展延伸:设时,的面积为,试用含的代数式表示;在旋转过程中,若时,求对应的的面积;在旋转过程中,当的面积为4.2时,求对应的的值.20(8分)已知:关于x的方程,根据下列条件求m的值(1)方程有一个根为1;(2)方程两个实数根的和与积相等21(8分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(3,2)、B(3,5)、C(1,2)在平面直角坐标系中画出ABC关于原点对称的A1B1C1;把ABC绕点A顺时针旋转一定的角度,得图中的AB2C2,点C2在AB上请写出:旋转

7、角为 度; 点B2的坐标为 22(10分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,求下列事件的概率(1)两次都摸到红球;(2)第一次摸到红球,第二次摸到绿球23(10分)为倡导节能环保,降低能源消耗,提倡环保型新能源开发,造福社会某公司研发生产一种新型智能环保节能灯,成本为每件40元市场调查发现,该智能环保节能灯每件售价y(元)与每天的销售量为x(件)的关系如图,为推广新产品,公司要求每天的销售量不少于1000件,每件利润不低于5元(1)求每件销售单价y(元)与每天的销售量为x(件)的函数关系式并直接写出自变量x的取值范围;(2)设

8、该公司日销售利润为P元,求每天的最大销售利润是多少元?(3)在试销售过程中,受国家政策扶持,毎销售一件该智能环保节能灯国家给予公司补贴m(m40)元在获得国家每件m元补贴后,公司的日销售利润随日销售量的增大而增大,则m的取值范围是 (直接写出结果)24(10分)抛物线过点(0,-5)和(2,1).(1)求b,c的值;(2)当x为何值时,y有最大值?25(12分)关于x的一元二次方程为(1)x22x10(1)求出方程的根;(2)为何整数时,此方程的两个根都为正整数?26解方程:x2x31参考答案一、选择题(每题4分,共48分)1、D【解析】分析:根据概率的求法,找准两点:全部情况的总数;符合条件

9、的情况数目;二者的比值就是其发生的概率详解:共6个数,大于3的有3个,P(大于3)=.故选D点睛:本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、C【解析】分析:连接BD,根据平行四边形的性质得出BP=DP,根据圆的性质得出PM=PN,结合对顶角的性质得出DPN=BPM,从而得出三角形全等,得出答案详解:连接BD,因为P为平行四边形ABCD的对称中心,则P是平行四边形两对角线的交点,即BD必过点P,且BP=DP,以P为圆心作圆,P又是圆的对称中心,过P的任意直线与圆相交于点M、N,PN=PM,DPN=BPM,PDNPB

10、M(SAS),BM=DN点睛:本题主要考查的是平行四边形的性质以及三角形全等的证明,属于中等难度的题型理解平行四边形的中心对称性是解决这个问题的关键3、A【分析】根据弧长公式解答即可【详解】解:如图所示:这是一个由四个半径都为1米的圆设计而成的花坛,圆心在同一直线上,每个圆都会经过相邻圆的圆心,OAOCOAOOOC1,AOC120,AOB60,这个花坛的周长,故选:A【点睛】本题考查了圆的弧长公式,找到弧所对圆心角度数是解题的关键4、B【解析】由图形折叠可得BE=EG,DF=FG;再由正方形ABCD的边长为3,BE=1,可得EG=1,EC=3-1=2,CF=3-FG;最后由勾股定理可以求得答案

11、.【详解】由图形折叠可得BE=EG,DF=FG,正方形ABCD的边长为3,BE=1,EG=1,EC=3-1=2,CF=3-FG,在直角三角形ECF中,EF2=EC2+CF2,(1+GF)2=22+(3-GF)2,解得GF=,EF=1+=故正确选项为B.【点睛】此题考核知识点是:正方形性质;轴对称性质;勾股定理.解题的关键在于:从图形折叠过程找出对应线段,利用勾股定理列出方程.5、D【分析】首先将代入二次函数,求出,然后利用根的判别式和求根公式即可判定的取值范围.【详解】将代入二次函数,得方程为故答案为D.【点睛】此题主要考查二次函数与一元二次方程的综合应用,熟练掌握,即可解题.6、A【分析】根

12、据“为避免亏本”可知,总售价总成本,列出不等式即可.【详解】解:由题意可知:故选:A.【点睛】此题考查的是一元一次不等式的应用,掌握实际问题中的不等关系是解决此题的关键.7、B【分析】根据题意分析得出点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,过点P作OPAB,取AQ的中点E作OEAQ交PQ于点O,连接OA,设半径长为R,则根据勾股定列出方程求出R的值,再根据弧长计算公式l=求出l值即可.【详解】解:依题意可知,点Q运动的轨迹是以AB为弦的一段圆弧,当点P运动到AB的中点处时PQ取得最大值,如图所示,连接PQ,取AQ的中点E作OEAQ交直线PQ于点O,连接O

13、A,OB.P是AB的中点,PA=PB=AB=6=3.和是等边三角形,AP=PC,PB=PD,APC=BPD=60,AP=PD,APD=120.PAD=ADP=30,同理可证:PBQ=BCP=30,PAD=PBQ.AP=PB,PQAB.tanPAQ= PQ= .在RtAOP中, 即解得:OA= .sinAOP= AOP=60.AOB=120.l= .故答案选B.【点睛】本题考查了弧长计算公式,等边三角形的性质,垂直平分线的性质,等腰三角形的性质,勾股定理,三角函数等知识,综合性较强,明确点Q的运动轨迹是一段弧是解题的关键.8、A【分析】利用位似的性质和相似三角形的性质得到,然后利用比例性质求出即

14、可【详解】解:ABC与DEF位似,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心注意:两个图形必须是相似形;对应点的连线都经过同一点;对应边平行9、B【分析】根据CDABMN,得到ABECDE,ABFMNF,根据相似三角形的性质可知, ,即可得到结论【详解】解:如图,CDABMN,ABECDE,ABFMNF, 即,解得:AB3.5m,故选:B【点睛】本题考查的是相似三角形的应用,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键10、D【分析】先根据正方形的性质以及勾

15、股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形【详解】解:设正方形的边长为2,则CD=2,CF=1在直角三角形DCF中,矩形DCGH为黄金矩形故选:D【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形11、B【分析】根据圆周角定理解答即可.【详解】解,BOD44,CBOD22,故选:B【点睛】本题考查了圆周角定理,属于基本题型,熟练掌握圆周角定理是关键.12、B【分析】连接AC,根据网格的特点求出r=AC的长度,再得到扇形的圆心角度数,根据

16、扇形面积公式即可求解.【详解】连接AC,则r=AC=扇形的圆心角度数为BAD=45,扇形的面积=故选B.【点睛】此题主要考查扇形面积求解,解题的关键是熟知勾股定理及扇形面积公式.二、填空题(每题4分,共24分)13、-1【解析】试题分析:对于一元二次方程的两个根和,根据韦达定理可得:+=,即,解得:,即方程的另一个根为-114、1【分析】根据弧长公式L求解即可【详解】L,R1故答案为1【点睛】本题考查了弧长的计算,解答本题的关键是掌握弧长公式:L15、34【解析】作ADBC于D点,根据等腰三角形的性质得到BD12BC3,然后根据余弦的定义求解【详解】解:如图,作ADBC于D点,ABAC4,BC

17、6,BD12BC3,在RtABD中,cosBBDAB34故答案为34【点睛】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比也考查了等腰三角形的性质16、或;【分析】由题意可知关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,由于反比例函数的图象有两个分支,因此可以分开来考虑【详解】解:关于x的不等式的解集实际上就是一次函数的值大于反比例函数的值时自变量x的取值范围,观察图象的交点坐标可得:或.【点睛】本题考查一次函数的图象和性质、反比例函数的图象和性质以及一次函数、反比例函数与一次不等式的关系,理解不等式与一次函数和反比例

18、函数的关系式解决问题的关键17、1【解析】试题解析:设这栋建筑物的高度为 由题意得 解得: 即这栋建筑物的高度为 故答案为118、72【详解】五角星绕中心点旋转一定的角度后能与自身完全重合,则其旋转的角度至少为=72.故答案为72.三、解答题(共78分)19、(1)相似;(2)定值,;(3)2,.【分析】(1)根据“两角相等的两个三角形相似”即可得出答案;(2)由得出,又为定值,即可得出答案;(3)先设结合得出将t=1代入中求解即可得出答案;将s=4.2代入中求解即可得出答案.【详解】(1)相似理由:,又,;(2)在旋转过程中的值为定值,理由如下:过点作于点,四边形为矩形,四边形为矩形,即在旋

19、转过程中,的值为定值,;(3)由(2)知:,又,即:;当时,的面积,当时,解得:,(舍去)当的面积为4.2时,;【点睛】本题考查的是几何综合,难度系数较高,涉及到了相似以及矩形等相关知识点,第三问解题关键在于求出面积与AE的函数关系式.20、(1);(2)【分析】(1)将1代入原方程,可得关于m的方程,解此方程即可求得答案;(2)利用根与系数的关系列出方程即可求得答案.【详解】(1)方程的根1代入方程得:=0,整理得:=0,故答案为:(2)方程两个实数根的和为方程两个实数根的积为,依题意得:,即:,分解因式得:解得:或2,当时,原方程为:,方程有实数根;当时,原方程为:,方程没有实数根,不符合

20、题意,舍去;m的值为:【点睛】本题考查了根与系数的关系及求解一元二次方程,熟练掌握一元二次方程根与系数的关系是解题的关键21、详见解析; 90 ;(6,2)【分析】(1)分别得到点A、B、C关于x轴的对称点,连接点A1,B1,C1,即可解答;(2)根据点A,B,C的坐标分别求出AC,BC,AC的长度,根据勾股定理逆定理得到CAB=90,即可得到旋转角;根据旋转的性质可知AB=AB2=3,所以CB2=AC+AB2=5,所以B2的坐标为(6,2)【详解】解:(1)A(3,2)、B(3,5)、C(1,2)关于x轴的对称点分别为A1(3,-2),B1(3,-5),C1(1,-2),如图所示,(2)A(

21、3,2)、B(3,5)、C(1,2),AB=3,AC=2,BC=,AB2+AC213, AB2+AC2=BC2,CAB=90,AC与AC2的夹角为CAC2,旋转角为90;AB=AB2=3,CB2=AC+AB2=5,B2的坐标为(6,2)【点睛】本题考查了轴对称及旋转的性质,解答本题的关键是掌握两种几何变换的特点,根据题意找到各点的对应点22、(1);(2)【分析】(1)列表得出所有等可能的情况数,找出两次摸到红球的情况数,即可确定出所求的概率;(2)列表得出所有等可能的情况数,找出第一次摸到红球,第二次摸到绿球的情况数,即可确定出所求的概率【详解】(1)列表如下:红绿红(红,红)(绿,红)绿(

22、红,绿)(绿,绿)所有等可能的情况有4种,所以第一次摸到红球,第二次摸到绿球的概率=;(2)由(1)得第一次摸到红球,第二次摸到绿球只有一种,故其概率为【点睛】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=23、(1)yx+70,自变量x的取值范围1000 x2500;见解析;(2)每天的最大销售利润是22500元;见解析;(3)20m1【分析】(1)利用待定系数法即可解决问题;(2)构建二次函数,利用二次函数的性质即可解决问题;(3)构建二次函数,利用二次函数的性质即可解决问题【详解】解:(1)设每件销售单价y(元)与每天的销售量为x(件)的函数关系式为ykx+b,把与代入ykx+b得,解得:,每件销售单价y(元)与每天的销售量为x(件)的函数关系式为yx+70,当y45时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论