




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1如图,A、D是O上的两个点,若ADC33,则ACO的大小为( )A57B66C67D442已知是关于的一元二次方程的解,则等于( )A1B-2C-1D23已知反比例函数y的图象如图所示,则二次函数yk2x2+x2k的图象大致为()ABCD4将二次
2、函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )ABCD5如图,已知ABC和EDC是以点C为位似中心的位似图形,且ABC和EDC的周长之比为1:2,点C的坐标为(2,0),若点B的坐标为(5,1),则点D的坐标为()A(4,2)B(6,2)C(8,2)D(10,2)6如图,点A、B、C是O上的三点,且四边形ABCO是平行四边形,OFOC交圆O于点F,则BAF等于()A12.5B15C20D22.57下列说法错误的是( )A必然事件的概率为1B心想事成,万事如意是不可能事件C平分弦(非直径)的直径垂直弦D的平方根是8如图,在ABC中,A=45,C=90,点D在线
3、段AC上,BDC=60,AD=1,则BD等于( )AB+1C-1D9如图,已知的周长等于 ,则它的内接正六边形ABCDEF的面积是( )ABCD10某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V()的反比例函数,其图象如图所示,当气球内的气压大于120kPa时,气球将会爆炸,为了安全起见,气球的体积应( )A不小于B大于C不小于D小于11去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差(单位:千克)如下表所示: 甲乙丙丁242423202.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树
4、进行种植,应选的品种是( )A甲B乙C丙D丁12已知反比例函数y,则下列点中在这个反比例函数图象上的是()A(1,2)B(1,2)C(2,2)D(2,l)二、填空题(每题4分,共24分)13已知3是一元二次方程x22x+a0的一个根,则a=_14如图,直线,若,则的值为_15已知二次函数y=ax2+bx+c(a0)的图象如图,有下列6个结论:abc0;ba+c; 4a+2b+c0;2a+b+c0;0;2a+b=0;其中正确的结论的有_16方程(x+5)24的两个根分别为_17在平面直角坐标系中,抛物线yx2的图象如图所示已知A点坐标为(1,1),过点A作AA1x轴交抛物线于点A1,过点A1作A
5、1A2OA交抛物线于点A2,过点A2作A2A3x轴交抛物线于点A3,过点A3作A3A4OA交抛物线于点A4,依次进行下去,则点A2019的坐标为_18如图,已知点A在反比例函数图象上,ACy轴于点C,点B在x轴的负半轴上,且ABC的面积为3,则该反比例函数的表达式为_三、解答题(共78分)19(8分)如图,抛物线的表达式为y=ax2+4ax+4a-1(a0),它的图像的顶点为A,与x轴负半轴相交于点B、点C(点B在点C左侧),与y轴交于点D,连接AO交抛物线于点E,且SAEC:SCEO=1:3.(1)求点A的坐标和抛物线表达式;(2)在抛物线的对称轴上是否存在一点P,使得BDP的内心也在对称轴
6、上,若存在,求点P的坐标;若不存在,请说明理由;(3)连接BD,点Q是y轴左侧抛物线上的一点,若以Q为圆心,为半径的圆与直线BD相切,求点Q的坐标.20(8分)如图,直线yax+b与x轴交于点A(4,0),与y轴交于点B(0,2),与反比例函数y(x0)的图象交于点C(6,m)(1)求直线和反比例函数的表达式;(2)连接OC,在x轴上找一点P,使OPC是以OC为腰的等腰三角形,请求出点P的坐标;(3)结合图象,请直接写出不等式ax+b的解集21(8分)某商场以每件20元购进一批衬衫,若以每件40元出售,则每天可售出60件,经调查发现,如果每件衬衫每涨价1元,商场平均每天可少售出2件,若设每件衬
7、衫涨价元,回答下列问题:(1)该商场每天售出衬衫 件(用含的代数式表示);(2)求的值为多少时,商场平均每天获利1050元?(3)该商场平均每天获利 (填“能”或“不能”)达到1250元?22(10分)如图,在RtABC中,ACB=90,ABC=30,AC=10cm,P为BC的中点,动点Q从点P出发,沿射线PC方向以cm/s的速度运动,以P为圆心,PQ长为半径作圆设点Q运动的时间为t秒(1)当t=2.5s时,判断直线AB与P的位置关系,并说明理由(2)已知O为RtABC的外接圆,若P与O相切,求t的值23(10分)如图,在中,圆是的外接圆.(1)求圆的半径;(2)若在同一平面内的圆也经过、两点
8、,且,请直接写出圆的半径的长.24(10分)2019年10月1日,是新中国70周年的生日,在首都北京天安门广场举行了盛大的建国70周年大阅兵,接受国家主席习近平的检阅,令国人振奋,令世界瞩目.在李克强总理庄严的指令下,56门礼炮 ,70响轰鸣,述说着56个民族,70载春华秋实的拼搏!图1是礼炮图片,图2是礼炮抽象示意图.已知:是水平线,的仰角分别是30和10,且(1)求点的铅直高度;(2)求两点的水平距离(结果精确到,参考数据:)25(12分)如图1,直线AB与x、y轴分别相交于点B、A,点C为x轴上一点,以AB、BC为边作平行四边形ABCD,连接BD,BDBC,将AOB沿x轴从左向右以每秒一
9、个单位的速度运动,当点O和点C重合时运动停止,设AOB与BCD重合部分的面积为S,运动时间为t秒,S与t之间的函数如图(2)所示(其中0t2,2tm,mtn时函数解析式不同)(1)点B的坐标为 ,点D的坐标为 ;(2)求S与t的函数解析式,并写出t的取值范围26如图:已知ABCD,过点A的直线交BC的延长线于E,交BD、CD于F、G(1)若AB3,BC4,CE2,求CG的长;(2)证明:AF2FGFE参考答案一、选择题(每题4分,共48分)1、A【分析】由圆周角定理定理得出AOC,再由等腰三角形的性质得到答案.【详解】解:AOC与ADC分别是弧AC对的圆心角和圆周角,AOC =2ADC =66
10、,在CAO中,AO=CO,ACO=OAC =,故选:A【点睛】本题考查了圆周角定理,此题难度不大,注意在同圆或等圆中,同弧或等弧所对圆周角等于它所对圆心角的一半,注意数形结合思想的应用2、C【分析】方程的解就是能使方程的左右两边相等的未知数的值,因而把x=-1代入方程就得到一个关于m+n的方程,就可以求出m+n的值【详解】将x=1代入方程式得1+m+n=0,解得m+n=-1故选:C【点睛】此题考查一元二次方程的解,解题关键在于把求未知系数的问题转化为解方程的问题3、A【分析】先根据已知图象确定反比例函数的系数k的正负,然后再依次确定二次函数的开口方向、对称轴、与y轴的交点坐标确定出合适图象即可
11、.【详解】解:反比例函数图象位于第一三象限,k0,k20,2k0,抛物线与y轴的交点(0,2k)在y轴负半轴,k20,二次函数图象开口向上,对称轴为直线x0,对称轴在y轴左边,纵观各选项,只有A选项符合故选:A【点睛】本题考查了二次函数和反比例函数的图象特征,根据反比例函数图象确定k的正负、熟知二次函数的性质是解题的关键.4、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1所得图象的解析式为:
12、y=(x+1)1-1;故选:B【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标5、A【分析】作BGx轴于点G,DHx轴于点H,根据位似图形的概念得到ABCEDC,根据相似是三角形的性质计算即可【详解】作BGx轴于点G,DHx轴于点H,则BGDH,ABC和EDC是以点C为位似中心的位似图形,ABCEDC,ABC和EDC的周长之比为1:2,由题意得,CG3,BG1,BGDH,BCGDCH,即,解得,CH6,DH2,OHCHOC4,则点D的坐标为为(4,2),故选:A【点睛】本题考查的是位似变换的性质,正确理解位似与相似的关系,记忆关于原点位似的两个图形对应点坐标之间的
13、关系是解题的关键6、B【详解】解:连接OB,四边形ABCO是平行四边形, OC=AB,又OA=OB=OC, OA=OB=AB, AOB为等边三角形, OFOC,OCAB, OFAB, BOF=AOF=30, 由圆周角定理得BAF=BOF=15故选:B7、B【分析】逐一对选项进行分析即可【详解】A. 必然事件的概率为1,该选项说法正确,不符合题意; B. 心想事成,万事如意是随机事件,该选项说法错误,符合题意;C. 平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意; D. 的平方根是,该选项说法正确,不符合题意;故选:B【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念
14、是解题的关键8、B【分析】设BC=x,根据锐角三角函数分别用x表示出AC和CD,然后利用ACCD=AD列方程即可求出BC,再根据锐角三角函数即可求出BD.【详解】解:设BC=x在ABC中,A=45,C=90,AC=BC=x在RtBCD中,CD=ACCD=AD,AD=1解得:即BC=在RtBCD中,BD=故选:B.【点睛】此题考查的是解直角三角形的应用,掌握用锐角三角函数解直角三角形是解决此题的关键.9、C【分析】过点O作OHAB于点H,连接OA,OB,由O的周长等于6cm,可得O的半径,又由圆的内接多边形的性质可得AOB=60,即可证明AOB是等边三角形,根据等边三角形的性质可求出OH的长,根
15、据S正六边形ABCDEF=6SOAB即可得出答案【详解】过点O作OHAB于点H,连接OA,OB,设O的半径为r,O的周长等于6cm,2r=6,解得:r=3,O的半径为3cm,即OA=3cm,六边形ABCDEF是正六边形,AOB=360=60,OA=OB,OAB是等边三角形,AB=OA=3cm,OHAB,AH=AB,AB=OA=3cm,AH=cm,OH=cm,S正六边形ABCDEF=6SOAB=63=(cm2)故选C.【点睛】此题考查了正多边形与圆的性质此题难度适中,注意掌握数形结合思想的应用10、C【解析】由题意设设,把(1.6,60)代入得到k=96,推出,当P=120时,由此即可判断【详解
16、】因为气球内气体的气压p(kPa)是气体体积V()的反比例函数,所以可设,由题图可知,当时,所以,所以.为了安全起见,气球内的气压应不大于120kPa,即,所以.故选C.【点睛】此题考查反比例函数的应用,解题关键在于把已知点代入解析式.11、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定【详解】因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选B【点睛】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越
17、大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好也考查了平均数的意义12、A【分析】根据y=得k=x2y=2,所以只要点的横坐标的平方与纵坐标的积等于2,就在函数图象上【详解】解:A、1222,故在函数图象上;B、12(2)22,故不在函数图象上;C、22282,故不在函数图象上;D、22142,故不在函数图象上故选A【点睛】本题主要考查反比例函数图象上点的坐标特征,所有反比例函数图象上的点的坐标适合解析式二、填空题(每题4分,共24分)13、-3【分析】根据一元二次方程解的定义把代入x22x+a0即可求得答案.【详解】将代入x22x+a0得:,解得:,故答案为:【点睛】本题考
18、查了一元二次方程解的定义,本题逆用一元二次方程解的定义是解题的关键.14、【解析】先由得出,再根据平行线分线段成比例定理即可得到结论【详解】,abc,故答案为:.【点睛】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键15、【分析】由抛物线的开口方向判断a与1的关系,由抛物线与y轴的交点判断c与1的关系,然后根据对称轴位置确定b的符号,可对作判断;令x1,则y abc,根据图像可得:abc1,进而可对作判断;根据对称性可得:当x2时,y1,可对对作判断;根据2ab1和c1可对作判断;根据图像与x轴有两个交点可对作判断;根据对称轴为:x1可得:ab,进
19、而可对判作断【详解】解:该抛物线开口方向向下,a1抛物线对称轴在y轴右侧,a、b异号,b1;抛物线与y轴交于正半轴,c1,abc1;故正确;令x1,则y abc1,acb,故错误;根据抛物线的对称性知,当x2时,y1,即4a2bc1;故错误;对称轴方程x1,b2a,2ab1,c1,2abc1,故正确;抛物线与x轴有两个交点,ax2bxc1由两个不相等的实数根,1,故正确由可知:2ab1,故正确综上所述,其中正确的结论的有:故答案为:【点睛】主要考查图象与二次函数系数之间的关系,会利用对称轴求2a与b的关系,以及二次函数与方程之间的转换,二次函数最值的熟练运用16、x17,x23【分析】直接开平
20、方法解一元二次方程即可.【详解】解:(x+5)24,x+52,x3或x7,故答案为:x17,x23【点睛】本题主要考查一元二次方程的解法中的直接开平方法,要求理解直接开平方法的适用类型,以及能够针对不同类型的题选用合适的方法进行计算.17、 (-1010,10102)【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标【详解】A点坐标为(1,1),直线OA为y=x,A1(-1,1),A1A2OA,直线A1A2为y=x+2,解 得 或 ,
21、A2(2,4),A3(-2,4),A3A4OA,直线A3A4为y=x+6,解 得 或 ,A4(3,9),A5(-3,9),A2019(-1010,10102),故答案为(-1010,10102)【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键18、y【解析】根据同底等高的两个三角形面积相等,可得AOC的面积=ABC的面积=3,再根据反比例函数中k的几何意义,即可确定k的值,进而得出反比例函数的解析式【详解】解:如图,连接AO,设反比例函数的解析式为y ACy轴于点C,ACBO,AOC的面积ABC的面积3,又AOC的面积|k|,|k
22、|3,k2;又反比例函数的图象的一支位于第二象限,k1k2这个反比例函数的解析式为y 故答案为y 【点睛】本题考查待定系数法求反比例函数的解析式和反比例函数中k的几何意义在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变三、解答题(共78分)19、(1)抛物线表达式为y=x2+4x+3 ;(2)P(-2,-3);(3)Q(-4,3).【分析】(1)根据抛物线的对称轴易求得顶点坐标,再根据SAEC:SCEO=1:3,求得OE:OA=3:4,再证得OFEOMA,求得点E的坐标,从而求得答案;(2)根据内心的定义知BPM=DPM,设点P(-2
23、,b),根据三角函数的定义求得,继而求得的值,从而求得答案;(3)设Q(m,m2+4m+3),分类讨论,点Q在BD左上方抛物线上,点Q在BD下方抛物线上,利用的不同计算方法求得的值,从而求得答案.【详解】(1)由抛物线y=ax2+4ax+4a-1得对称轴为直线,当时, ,SAEC:SCEO=1:3 ,AE:OE=1:3 ,OE:OA=3:4,过点E作EFx轴,垂足为点F,设对称轴与x轴交点为M,如图,EF/AM ,OFEOMA , , , ,把点代入抛物线表达式y=ax2+4ax+4a-1得,解得:a=1,抛物线表达式为:y=x2+4x+3 ;(2)三角形的内心是三个角平分线的交点,BPM=D
24、PM,过点D作DHAM,垂足为点H,设点P(-2,b),tanBPM=tanDPM , ,P(-2,-3),(3)抛物线表达式为:y=x2+4x+3 ,抛物线与轴和轴的交点坐标分别为:B(-3,0) ,C(-1,0) ,D(0,3) ,设Q(m,m2+4m+3),点Q在BD左上方抛物线上,如图:作BGx轴交BD于G,QFx轴交于F,作QEBD于E,设直线QD的解析式为:,点Q的坐标为(m,m2+4m+3)代入得:,直线QD的解析式为:,当时,点G的坐标为; ,即:,解得:或(不合题意,舍去) ,点的坐标为:);点Q在BD下方抛物线上,如图:QFx轴交于F,交BD于G,作QEBD于E,设直线BD
25、的解析式为:,将点B(-3,0)代入得:,直线BD的解析式为:,当时,点G的坐标为; ,即:,方程无解,综上:点的坐标为:).【点睛】本题考查了运用待定系数法求直线及抛物线的解析式,三角函数的定义,勾股定理,三角形的面积,综合性比较强,学会分类讨论的思想思考问题,利用三角形面积的不同计算方法构建方程求值是解答本题的关键.20、(1)yx1;y;(1)点P1的坐标为(,0),点P1的坐标为(,0),(11,0);(3)0 x2【解析】(1)根据点A,B的坐标,利用待定系数法即可求出直线AB的函数表达式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点C的坐标,利用待定系数法即可求出反比例函数
26、的表达式;(1)过点C作CDx轴,垂足为D点,利用勾股定理看求出OC的长,分OCOP和COCP两种情况考虑:当OPOC时,由OC的长可得出OP的长,进而可求出点P的坐标;当COCP时,利用等腰三角形的性质可得出ODPD,结合OD的长可得出OP的长,进而可得出点P的坐标;(3)观察图形,由两函数图象的上下位置关系,即可求出不等式ax+b的解集【详解】解:(1)将A(4,0),B(0,1)代入yax+b,得:,解得:,直线AB的函数表达式为yx1当x2时,yx11,点C的坐标为(2,1)将C(2,1)代入y,得:1,解得:k2,反比例函数的表达式为y(1)过点C作CDx轴,垂足为D点,则OD2,C
27、D1,OCOC为腰,分两种情况考虑,如图1所示:当OPOC时,OC,OP,点P1的坐标为(,0),点P1的坐标为(,0);当COCP时,DPDO2,OP1OD11,点P3的坐标为(11,0)(3)观察函数图象,可知:当0 x2时,反比例函数y的图象在直线yx1的上方,不等式ax+b的解集为0 x2【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、等腰三角形的性质、勾股定理以及反比例函数图象上点的坐标特征,解题的关键是:(1)根据点的坐标,利用待定系数法求出一次(反比例)函数的关系式;(1)分OC=OP和CO=CP两种情况求出点P的坐标;(3
28、)根据两函数图象的上下位置关系,找出不等式的解集21、(1);(2)当时,商场平均每天获利1050元;(3)能【分析】(1)根据题意写出答案即可.(2)根据题意列出方程,解出答案即可.(3)令利润代数式为1250,解出即可判断.【详解】(1)根据题意:每天可售出60件,如果每件衬衫每涨价1元,商场平均每天可少售出2件,则商场每天售出衬衫:(2)解得,(不符合题意,舍去).答:当时,商场平均每天获利1050元.(3)根据题意可得:解得:x=5所以,商场平均每天获利能达到1250元【点睛】本题考查一元二次方程的应用,关键在于理解题意找出等量关系.22、(1)相切,证明见解析;(2)t为s或s【分析
29、】(1)直线AB与P关系,要考虑圆心到直线AB的距离与P的半径的大小关系,作PHAB于H点,PH为圆心P到AB的距离,在RtPHB中,由勾股定理PH,当t=2.5s时,求出PQ的长,比较PH、PQ 大小即可,(2)OP为两圆的连心线,圆P与圆O内切rO-rP=OP, 圆O与圆P内切,rP-rO=OP即可【详解】(1)直线AB与P相切理由:作PHAB于H点,ACB=90,ABC=30,AC=10,AB=2AC=20,BC=,P为BC的中点 BP= PH=BP=,当t=2.5s时,PQ= ,PH=PQ= 直线AB与P相切 ,(2)连结OP,O为AB的中点,P为BC的中点,OP=AC=5,O为RtA
30、BC的外接圆,AB为O的直径,O的半径OB=10 , P与O相切 , PQ-OB=OP或OB-PQ=OP 即t-10=5或10-t =5, t=或t= , 故当t为s或s时,P与O相切【点睛】本题考查直线与圆的位置关系,圆与圆相切时求运动时间t问题,关键点到直线的距离与半径是否相等,会求点到直线的距离,会用t表示半径与点到直线的距离,抓住两圆相切分清情况,由圆心在圆O内,没有外切,只有内切,要会分类讨论,掌握圆P与圆O内切rO-rP=OP, 圆O与圆P内切,rP-rO=OP23、(1);(2)或【分析】(1)过点作,垂足为,连接,根据垂直平分线的性质可得在上,根据垂径定理即可求出BD,再根据勾
31、股定理即可求出AD,设,根据勾股定理列出方程即可求出半径;(2)根据垂直平分线的判定可得点P在BC的中垂线上,即点P在直线AD上,然后根据点A和点P的相对位置分类讨论,然后根据勾股定理分别求出半径即可【详解】(1)过点作,垂足为,连接,垂直平分点在的垂直平分线上,即在上在中,设,则在中,即解得,即圆的半径为(2)圆也经过、两点,PA=PB点P在BC的中垂线上,即点P在直线AD上当点P在A下方时,此时AP=2,如下图所示,连接PBPD=ADAP=4根据勾股定理PB=;当点P在A上方时,此时AP=2,如下图所示,连接PBPD=AD+AP=8根据勾股定理PB=综上所述:圆的半径的长为或【点睛】此题考查的是垂直平分线的判定及性质、勾股定理和垂径定理,掌握垂直平分线的判定及性质、勾股定理和垂径定理的结合、数形结合的数学思想和分类讨论的数学思想是解决此题的关键24、 (1)点A的铅直高度是2019mm;(2) A,E两点的水平距离约为3529mm【分析】(1)如图,作AGEF,CHAG,DMEF,垂足分别为点G,H,M,利用 求出AH的长,利用 求出DM的长,从而求出AG的长,即点的铅直高度;(2)利用 求出CH的长,再利用 求出EM,从而求出A,E两点的水平距离【详解】如图,作AGEF,CHAG,DMEF,垂足分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB31/T 715-2013汽车玻璃用膜安全节能技术要求
- DB31/T 688-2013建筑工程施工质量安全风险管理规范
- DB31/T 656-2021铝及铝合金熔解保温炉节能运行评价指标
- DB31/T 560-2011道路清扫保洁作业道班房设置和设计要求
- DB31/T 551-2011星级饭店建筑合理用能指南
- DB31/T 1220-2020社区矫正社会工作服务规范
- DB31/T 1062-2017市场监督管理部门视觉识别规范
- DB31/T 1008.2-2016甜瓜生产技术规范第2部分:秋季大棚栽培
- DB31/ 781-2014岸边集装箱起重机能源消耗指标限额和计算方法
- 电信服务在旅游行业的推广考核试卷
- DB5133T 69-2022 高寒退化草地生态修复技术规范
- 公园景区安全生产
- 中药五味子简介
- 热轧工艺流程
- 可燃及易燃易爆危险品管理制度模版(4篇)
- (完整版)一般现在时-现在进行时-一般过去时练习题及答案
- 2024年10月自考15040习概试题及答案含评分参考
- TSGD7002-2023-压力管道元件型式试验规则
- 交通运输测绘成果及档案管理制度
- 2023年铁塔动环监控系统统一互联B接口技术规范培训资料
- 中国偏头痛诊治指南(第一版)2023解读
评论
0/150
提交评论