版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、类型五 二次函数与三角形全等、相似(位似)有关的问题【典例1】如图,已知抛物线yax2+bx+6经过两点A(1,0),B(3,0),C是抛物线与y轴的交点(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得CMN90,且CMN与OBC相似,如果存在,请求出点M和点N的坐标【典例2】如图,抛物线与x轴交于A、B两点(点A在点B左边),与y轴交于点C直线经过B、C两点 (1)求抛物线的解析式;(2)点P是抛物线上的一动
2、点,过点P且垂直于x轴的直线与直线及x轴分别交于点D、M,垂足为N设点P在抛物线上运动,若P、D、M三点中恰有一点是其它两点所连线段的中点(三点重合除外)请直接写出符合条件的m的值;当点P在直线下方的抛物线上运动时,是否存在一点P,使与相似若存在,求出点P的坐标;若不存在,请说明理由【典例3】如图,抛物线与x轴正半轴交于点A,与y轴交于点B(1)求直线的解析式及抛物线顶点坐标;(2)如图1,点P为第四象限且在对称轴右侧抛物线上一动点,过点P作轴,垂足为C,交于点D,求的最大值,并求出此时点P的坐标;(3)如图2,将抛物线向右平移得到抛物线,直线与抛物线交于M,N两点,若点A是线段的中点,求抛物
3、线的解析式【典例4】在平面直角坐标系中,已知抛物线与轴交于,两点(点在点的左侧),与轴交于点,顶点为点(1)当时,直接写出点,的坐标:_,_,_,_;(2)如图1,直线交轴于点,若,求的值和的长;(3)如图2,在(2)的条件下,若点为的中点,动点在第三象限的抛物线上,过点作轴的垂线,垂足为,交于点;过点作,垂足为设点的横坐标为,记用含的代数式表示;设,求的最大值【典例5】如图,直线l经过点(4,0)且平行于y轴,二次函数yax22ax+c(a、c是常数,a0)的图象经过点M(1,1),交直线l于点N,图象的顶点为D,它的对称轴与x轴交于点C,直线DM、DN分别与x轴相交于A、B两点(1)当a1
4、时,求点N的坐标及的值;(2)随着a的变化,的值是否发生变化?请说明理由;(3)如图,E是x轴上位于点B右侧的点,BC2BE,DE交抛物线于点F若FBFE,求此时的二次函数表达式【典例6】若一次函数的图象与轴,轴分别交于A,C两点,点B的坐标为,二次函数的图象过A,B,C三点,如图(1)(1)求二次函数的表达式;(2)如图(1),过点C作轴交抛物线于点D,点E在抛物线上(轴左侧),若恰好平分求直线的表达式;(3)如图(2),若点P在抛物线上(点P在轴右侧),连接交于点F,连接,当时,求点P的坐标;求的最大值【典例7】如图,抛物线与x轴交于点和点,与y轴交于点C,顶点为D,连接与抛物线的对称轴l交于点E(1)求抛物线的表达式;(2)点P是第一象限内抛物线上的动点,连接,当时,求点P的坐标;(3)点N是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC TS 12791:2024 EN Information technology - Artificial intelligence - Treatment of unwanted bias in classification and regression machine learning tasks
- 2024年度云南省高校教师资格证之高等教育学题库附答案(典型题)
- 2024-2025学年甘肃省白银市七年级(上)期中生物试卷(含答案)
- 阜阳师范大学《制药分离工程》2022-2023学年第一学期期末试卷
- 苏教版六年级上册科学教案(详细)
- 二年级上册《生命安全教育》教案
- 福建师范大学协和学院《商务沟通》2022-2023学年第一学期期末试卷
- 《借款合同》-企业管理
- 福建师范大学《数学基础二》2021-2022学年第一学期期末试卷
- 福建师范大学《区域分析与规划》2022-2023学年第一学期期末试卷
- 贵州贵州贵阳龙洞堡国际机场股份有限公司招聘真题
- 第八届全国医药行业特有职业技能竞赛(中药调剂员)考试题及答案
- 小学语文一年级上册课件第四单元01-10 ai ei ui
- GB/T 44413-2024城市轨道交通分类
- 2022年辽宁省中考语文现代文阅读之说明文阅读5篇
- 2023年湖北省黄石市中考语文真题(解析版)
- 2024至2030年中国真空绝热板行业深度调研及投资战略分析报告
- 液压电气基础知识单选题100道及答案
- “双千兆”网络协同发展行动计划(2021-2023年)
- 6.2交友的智慧 课件-2024-2025学年道德与法治七年级上册(统编版2024)
- 基于单元主题的小学英语跨学科学习活动的实践与研究
评论
0/150
提交评论