版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,点A、B、C都在O上,若AOC=140,则B的度数是()A70B80C110D1402已知如图,直线,相交于点,且,添加一个条件后,仍不能判定的是(
2、 )ABCD3如图,将n个边长都为2的正方形按如图所示摆放,点A1,A2,An分别是正方形的中心,则这n个正方形重叠部分的面积之和是()AnBn1C()n1Dn4如果,那么锐角A的度数是 ( )A60B45C30D205已知三角形的面积一定,则它底边a上的高h与底边a之间的函数关系的图象大致是( )ABCD6如图,AD是ABC的中线,点E在AD上,AD4DE,连接BE并延长交AC于点F,则AF:FC的值是()A3:2B4:3C2:1D2:37如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tanBAC的值为()AB1CD8如图,是的外接圆,是直径若,则等于( )ABCD9剪纸是中
3、国特有的民间艺术.在如图所示的四个剪纸图案中.既是轴对称图形又是中心对称图形的是( )ABCD10如图显示了用计算机模拟随机投掷一枚图钉的实验结果随着试验次数的增加,“钉尖向上”的频率总在某个数字附近,显示出一定的稳定性,可以估计“钉尖向上”的概率是()A0.620B0.618C0.610D1000二、填空题(每小题3分,共24分)11如图,在ABCD中,E、F分别是AD、CD的中点,EF与BD相交于点M,若DEM的面积为1,则ABCD的面积为_12线段,的比例中项是_.13如图,面积为6的矩形的顶点在反比例函数的图像上,则_14如果等腰ABC中,那么_15一艘观光游船从港口以北偏东的方向出港
4、观光,航行海里至处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东方向,马上以海里每小时的速度前往救援,海警船到达事故船处所需的时间大约为_小时(用根号表示)16如图,BA,BC是O的两条弦,以点B为圆心任意长为半径画弧,分别交BA,BC于点M,N:分别以点M,N为圆心,以大于为半径画弧,两弧交于点P,连接BP并延长交于点D;连接OD,OC若,则等于_.17如图,已知BADCAE,ABCADE,AD3,AE2,CE4,则BD为_18若一三角形的三边长分别为5、12、13,则此三角形的内切圆半径为_三、解答题(共66分)19(10分)在中,
5、点在边上运动,连接,以为一边且在的右侧作正方形.(1)如果,如图,试判断线段与之间的位置关系,并证明你的结论;(2)如果,如图,(1)中结论是否成立,说明理由.(3)如果,如图,且正方形的边与线段交于点,设,请直接写出线段的长.(用含的式子表示)20(6分)已知抛物线的顶点坐标为(1,2),且经过点(3,10)求这条抛物线的解析式21(6分)如图,正方形ABCD 中,E,F分别是AB,BC边上的点,AF与DE相交于点G,且AFDE. 求证:(1)BFAE;(2)AFDE. 22(8分)如图,已知是的外接圆,是的直径,为外一点,平分,且(1)求证:;(2)求证:与相切23(8分)为了巩固全国文明
6、城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2016年的绿色建筑面积约为950万平方米,2018年达到了1862万平方米.若2017年、2018年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2019年我市计划推行绿色建筑面积达到2400万平方米.如果2019年仍保持相同的年平均增长率,请你预测2019年我市能否完成计划目标?24(8分)如图,已知二次函数的图象与轴交于点、,与轴交于点,直线交二次函数图象的对称轴于点,若点C为的中点. (1)求的值;(2)若二次函数图象上有一点,使
7、得,求点的坐标;(3)对于(2)中的点,在二次函数图象上是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.25(10分)如图,求和的长26(10分)我们把两条中线互相垂直的三角形称为“中垂三角形”. 如图1,图2,图3中,是的中线,垂足为点,像这样的三角形均为“中垂三角形. 设. (1)如图1,当时,则_,_;(2)如图2,当时,则_,_;归纳证明(3)请观察(1)(2)中的计算结果,猜想三者之间的关系,用等式表示出来,并利用图3证明你发现的关系式;拓展应用(4)如图4,在中,分别是的中点,且. 若,求的长.参考答案一、选择题(每小题3分,共30分)1、C【解析】分析:作对的圆周角
8、APC,如图,利用圆内接四边形的性质得到P=40,然后根据圆周角定理求AOC的度数详解:作对的圆周角APC,如图,P=AOC=140=70P+B=180,B=18070=110,故选:C点睛:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半2、C【分析】根据全等三角形判定,添加或或可根据SAS或ASA或AAS得到.【详解】添加或或可根据SAS或ASA或AAS得到,添加属SSA,不能证.故选:C【点睛】考核知识点:全等三角形判定选择.熟记全等三角形的全部判定是关键.3、B【分析】过中心作阴影另外两边的垂线可构建两个全等三角形(ASA),由此可知阴影
9、部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为(n-1)个阴影部分的和,即可求解【详解】如图作正方形边的垂线,由ASA可知同正方形中两三角形全等,利用割补法可知一个阴影部分面积等于正方形面积的 ,即是,n个这样的正方形重叠部分(阴影部分)的面积和为:故选:B【点睛】本题考查了正方形的性质、全等三角形的判定与性质解题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积4、A【分析】根据特殊角的三角函数值即可求解【详解】解:,锐角A的度数是60,故选:A【点睛】本题考查特殊角的三角函数值,掌握特殊角的三角函数
10、值是解题的关键5、D【解析】先写出三角形底边a上的高h与底边a之间的函数关系,再根据反比例函数的图象特点得出【详解】解:已知三角形的面积s一定,则它底边a上的高h与底边a之间的函数关系为S=ah,即;该函数是反比例函数,且2s0,h0;故其图象只在第一象限故选:D【点睛】本题考查反比例函数的图象特点:反比例函数的图象是双曲线,与坐标轴无交点,当k0时,它的两个分支分别位于第一、三象限;当k0时,它的两个分支分别位于第二、四象限6、A【分析】过点D作DGAC, 根据平行线分线段成比例定理,得FC=1DG,AF=3DG,因此得到AF:FC的值【详解】解:过点D作DGAC,与BF交于点GAD=4DE
11、,AE=3DE,AD是ABC的中线,DGAC,即AF=3DG,即FC=1DG,AF:FC=3DG:1DG=3:1故选:A【点睛】本题考查了平行线分线段成比例定理,正确作出辅助线充分利用对应线段成比例的性质是解题的关键7、B【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到ABC为等腰直角三角形,即可求出所求【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,ABC为等腰直角三角形,BAC=45,则tanBAC=1,故选B【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键8、C【解析】根据同弧所对
12、的圆周角等于圆心角的一半可得:A=BOC=40【详解】BOC=80,A=BOC=40故选C【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半9、C【解析】根据轴对称图形的定义沿一条直线对折后,直线两旁部分完全重合的图形是轴对称图形,以及中心对称图形的定义分别判断即可得出答案【详解】A. 此图形沿一条直线对折后不能够完全重合,此图形不是轴对称图形,不是中心对称图形,故此选项错误;B. 此图形沿一条直线对折后能够完全重合,此图形不是轴对称图形,不是中心对称图形,故此选项错误。C. 此图形沿一条直线对折后能够完全重合,此图形是轴对称图形,旋转18
13、0能与原图形重合,是中心对称图形,故此选项正确;D. 此图形沿一条直线对折后能够完全重合,旋转180不能与原图形重合,此图形是轴对称图形,不是中心对称图形,故此选项错误。故选C【点睛】此题考查轴对称图形和中心对称图形,难度不大10、B【解析】结合给出的图形以及在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,解答即可【详解】由图象可知随着实验次数的增加,“钉尖向上”的频率总在0.1附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.1故选B【点睛】考查利用频率估计概率大量反复试验下频率稳定值即概率用到的知识点为:概率=所求情况数与总情况数之比二、填空题(每小题3分,
14、共24分)11、16【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,AD=BC,ADBCDEFCHF, DEMBHM , F是CD的中点DF=CFDE=CHE是AD中点AD=2DEBC=2DEBC=2CHBH=3CH 四边形ABCD是平行四边形 故答案为:16.12、【分析】根据比例中项的定义,若b是a,c的比例中项,即b2ac即可求解【详解】解:设线段c是线段a、b的比例中项,c2ab,a2,b3,c故答案为:【点睛】本题主要考查了线段的比例中项的定义,注意线段不能为负13、-1【分析】根据反比例函数系数k的几何意义可得|k|=1,再根据函数所在的象限确定k的值【详解】解:反比例
15、函数的图象经过面积为1的矩形OABC的顶点B,|k|=1,k=1,反比例函数的图象经过第二象限,k=-1故答案为:-1【点睛】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|14、;【分析】过点作于点,过点作于点,由于,所以,根据勾股定理以及锐角三角函数的定义可求出的长度【详解】解:过点作于点,过点作于点,AB=AC=3,BE=EC=1,BC=2,又,BD=,, ,故答案为:.【点睛】本题考查解直角三角形,涉及锐角三角函数的定义,需要学生灵活运用所学知识15、【分析】过点C作CDAB交AB延长线于D先解RtACD得出CD=AC=40海里,再解RtC
16、BD中,得出BC=(海里),然后根据时间=路程速度即可求出海警船到大事故船C处所需的时间【详解】解:如图,过点C作CDAB交AB延长线于D在RtACD中,ADC=90,CAD=30,AC=60海里,CD=AC=30海里在RtCBD中,CDB=90,CBD=90-37=53,BC=(海里),海警船到大事故船C处所需的时间大约为:2040=(小时)故答案为【点睛】本题考查了解直角三角形的应用-方向角问题,难度适中,作出辅助线构造直角三角形是解题的关键16、【分析】根据作图描述可知BD平分ABC,然后利用同弧所对的圆周角是圆心角的一半可求出CBD的度数,由ABD=CBD即可得出答案.【详解】根据作图
17、描述可知BD平分ABC,ABD=CBDCOD=70BCD=COD=35ABD=35故答案为:35.【点睛】本题考查了角平分线的作法,圆周角定理,判断出BD为角平分线,熟练掌握同弧所对的圆周角是圆心角的一半是解题的关键.17、1【解析】根据相似三角形的判定和性质定理即可得到结论【详解】解:BADCAE,BACDAE,ABCADE,ABCADE,ABDACE,BD1,故答案为:1【点睛】本题考查了相似三角形的判定和性质定理,找对应角或对应边的比值是解题的关键.18、1【解析】,由勾股定理逆定理可知此三角形为直角三角形,它的内切圆半径,三、解答题(共66分)19、(1);证明见解析; (2)成立;理
18、由见解析;(3).【分析】(1)先证明,得到,再根据角度转换得到BCF=90即可;(2)过点作交于点,可得,再证明,得,即可证明;(3)过点作交的延长线于点,可求出,则,根据得出相似比,即可表示出CP.【详解】(1);证明:,由正方形得,在与中,即;(2)时,的结论成立;证明:如图2,过点作交于点,在和中,即;(3)过点作交的延长线于点,AQC为等腰直角三角形,DC=x,四边形ADEF为正方形,ADE=90,PDC+ADQ=90,ADQ+QAD=90,PDC=QAD,.【点睛】本题考查了全等三角形性质及判定,相似三角形的判定及性质,正方形的性质等,构建全等三角形,相似三角形是解决此题的关键20
19、、y1(x1)1+1【分析】根据题意设抛物线解析式为ya(x1)1+1,代入(3,10)求解即可【详解】解:根据题意设抛物线解析式为ya(x1)1+1,把(3,10)代入得a(31)1+110,解得a1,所以抛物线解析式为y1(x1)1+1【点睛】本题考查了抛物线的问题,掌握抛物线的性质以及解析法、待定系数法是解题的关键21、 (1)见解析;(2)见解析.【解析】(1)根据正方形的性质得到AD=AB,DAE=ABE=90,根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质得到ADE=BAF,根据余角的性质即可得到结论【详解】证明:(1)四边形ABCD是正方形, AD=AB,DAE=A
20、BE=90,在RtDAE与RtABF中,ADABDEAF ,RtDAERtABF(HL),BF=AE;(2)RtDAERtABF,ADE=BAF,ADE=AED=90,BAF=AEG=90,AGE=90,AFDE【点睛】本题考查正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键22、(1)证明见解析;(2)证明见解析【分析】(1)由角平分线的定义得出,再根据即可得出;(2)由相似三角形的性质可得出,然后利用等腰三角形的性质和等量代换得出 ,从而有 ,根据平行线的性质即可得出 ,则结论可证【详解】(1)平分, (2)连接OC是的直径, 与相切【点睛】本题主要考查相似
21、三角形的判定及性质,切线的判定,掌握相似三角形的判定及性质,切线的判定方法是解题的关键23、(1)这两年我市推行绿色建筑面积的年平均增长率为40%;(2)如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【分析】(1)设这两年我市推行绿色建筑面积的年平均增长率x,根据2016年的绿色建筑面积约为950万平方米和2018年达到了1862万平方米,列出方程求解即可;(2)根据(1)求出的增长率问题,先求出预测2019年绿色建筑面积,再与计划推行绿色建筑面积达到2400万平方米进行比较,即可得出答案【详解】(1)设这两年我市推行绿色建筑面积的年平均增长率为x,则有950(1+x)
22、2=1862,解得,x1=0.4,x2=2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,2606.82400,2019年我市能完成计划目标,即如果2019年仍保持相同的年平均增长率,2019年我市能完成计划目标.【点睛】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件和增长率问题的数量关系,列出方程进行求解24、(1);(2)或;(3)不存在,理由见解析.【分析】(1)设对称轴与轴交于点,如图1,易求出抛物线的对称轴,可得OE的长,然后根据平行线分线段成比例定理可得OA的长,进而可得点A的坐
23、标,再把点A的坐标代入抛物线解析式即可求出m的值;(2)设点Q的横坐标为n,当点在轴上方时,过点Q作QHx轴于点H,利用可得关于n的方程,解方程即可求出n的值,进而可得点Q坐标;当点在轴下方时,注意到,所以点与点关于直线对称,由此可得点Q坐标;(3)当点为x轴上方的点时,若存在点P,可先求出直线BQ的解析式,由BPBQ可求得直线BP的解析式,然后联立直线BP和抛物线的解析式即可求出点P的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P是否满足条件;当点Q取另外一种情况的坐标时,再按照同样的方法计算判断即可.【详解】解:(1)设抛物线的对称轴与轴交于点,如图1,轴,抛物线的对称轴是直
24、线,OE=1,将点代入函数表达式得:,;(2)设,点在轴上方时,如图2,过点Q作QHx轴于点H,解得:或(舍),;点在轴下方时,OA=1,OC=3,点与点关于直线对称,;(3)当点为时,若存在点P,使,则PBQ=COA=90,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,不存在; 当点为时,如图4,由B(3,0)、Q可得,直线BQ的解析式为:,所以直线PB的解析式为:,联立方程组:,解得:,不存在.综上所述,不存在满足条件的点,使.【点睛】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐
25、角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.25、,【分析】过C作CQAD,交GH于N,交EF于M,交AB于Q,则可判断四边形AQCD为平行四边形,所以AQ=CD=6,同理可得EM=EM=CD=6,则BQ=AB-AQ=6,再利用平行线分线段成比例定理得到DE:EG:GA=CF:HF:HB=3:4:5,然后根据平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例得到MF:BQ=CF:CB=3:12,NH:BQ=CH:CB=7:12,则可计算出MF和NH,从而得到GH和EF的长
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 配送合同模板
- 职业金基金合同范例
- 无偿租赁合同的注意事项
- 2024年度设备租赁合同:设备型号、租赁期限及维修义务的具体约定
- 集体实习就业合同模板
- 全球贸易货物购买合同
- 广场场地租赁合同注意事项
- 2024年度软件许可使用合同:甲方授权乙方使用软件
- 长期雇佣合同的简单格式
- 新房购销合同模板示例
- 《焊接自动化技术》教学大纲
- 《主持人基础培训》课件
- 预防校园欺凌主题班会课件(共36张课件)
- 碳汇经济与美丽中国智慧树知到期末考试答案2024年
- 24春国家开放大学《教育心理学》终结性考核参考答案
- 求职能力展示
- 2023年中国风能太阳能资源年景公报
- 软件工程生涯发展展示
- 医院保安服务方案(技术方案)
- 2021 国家开放大学《经济学基础》形考任务1-4
- 离婚登记申请受理回执单(民法典版)
评论
0/150
提交评论