版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、试卷第 =page 1 1页,共 =sectionpages 3 3页一轮难题复习 数列典型解答题1牢记概念与公式等差数列、等比数列(其中nN*)等差数列等比数列通项公式ana1(n1)dana1qn1(q0)前n项和Sneq f(na1an,2)na1eq f(nn1,2)d(1)q1,Sneq f(a11qn,1q)eq f(a1anq,1q);(2)q1,Snna12.活用定理与结论(1)等差、等比数列an的常用性质等差数列等比数列性质若m,n,p,qN*,且mnpq,则amanapaq;anam(nm)d;Sm,S2mSm,S3mS2m,仍成等差数列若m,n,p,qN*,且mnpq,则
2、amanapaq;anamqnm;Sm,S2mSm,S3mS2m,仍成等比数列(Sm0)(2)判断等差数列的常用方法定义法an1and(常数)(nN*)an是等差数列;通项公式法anpnq(p,q为常数,nN*)an是等差数列;中项公式法2an1anan2(nN*)an是等差数列;前n项和公式法SnAn2Bn(A,B为常数,nN*)an是等差数列(3)判断等比数列的常用方法定义法eq f(an1,an)q(q是不为0的常数,nN*)an是等比数列;通项公式法ancqn(c,q均是不为0的常数,nN*)an是等比数列;中项公式法aeq oal(2,n1)anan2(anan1an20,nN*)a
3、n是等比数列3数列求和的常用方法(1)等差数列或等比数列的求和,直接利用公式求和(2)通项公式形如anbn(其中an为等差数列,bn为等比数列)的数列,利用错位相减法求和(3)通项公式形如aneq f(c,anb1anb2)(其中a,b1,b2,c为常数)用裂项相消法求和(4)通项公式形如an(1)nn或ana(1)n(其中a为常数,nN*)等正负项交叉的数列求和一般用并项法并项时应注意分n为奇数、偶数两种情况讨论(5)分组求和法:分组求和法是解决通项公式可以写成cnanbn形式的数列求和问题的方法,其中an与bn是等差(比)数列或一些可以直接求和的数列(6)并项求和法:先将某些项放在一起求和
4、,然后再求Sn.4数学归纳法用数学归纳法证明分以下两个步骤:(1)证明当n1时,命题成立;(2)假设nm时,命题成立,那么可以推导出在nm1时命题也成立(m代表任意自然数)例题1几位大学生响应国家的创业号召,开发了三款软件,为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动,这三款软件的激活码分别为下面数学问题的三个答案:已知数列,其中第一项是,接下来的两项是,再接下来的三项是,以此类推,试根据下列条件求出三款软件的激活码(1)A款应用软件的激活码是该数列中第四个三位数的项数的平方(2)B款应用软件的激活码是该数列中第一个四位数及其前所有项的和(3)C款应用软件的激活码是满足
5、如下条件的最小整数:;该数列的前项和为2的整数幂例题2已知数列,满足;(1)若,求的通项公式;(2)若,求的前项和为;(3)若,满足恒成立,求的取值范围;例题3已知数列满足,.(1)若,写出所有可能的值;(2)若数列是递增数列,且、成等差数列,求p的值;(3)若,且是递增数列,是递减数列,求数列的通项公式.例题4无穷数列满足:为正整数,且对任意正整数,为前项、中等于的项的个数.(1)若,求和的值;(2)已知命题 存在正整数,使得,判断命题的真假并说明理由;(3)若对任意正整数,都有恒成立,求的值.例题5本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分从数列中取出部分项,并
6、将它们按原来的顺序组成一个数列,称之为数列的一个子数列设数列是一个首项为、公差为的无穷等差数列(1)若,成等比数列,求其公比(2)若,从数列中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为的无穷等比子数列,请说明理由(3)若,从数列中取出第1项、第项(设)作为一个等比数列的第1项、第2项,试问当且仅当为何值时,该数列为的无穷等比子数列,请说明理由例题6将边长分别为、的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第个、第个、第个阴影部分图形.设前个阴影部分图形的面积的平均值为.记数列满足,(1)求的表达式;(2)写出,的值,并求数列的通项公式
7、;(3)定义,记,且恒成立,求的取值范围.例题7(理)已知等差数列的公差是,是该数列的前项和.(1)试用表示,其中、均为正整数;(2)利用(1)的结论求解:“已知,求”;(3)若数列前项的和分别为,试将问题(1)推广,探究相应的结论. 若能证明,则给出你的证明并求解以下给出的问题;若无法证明,则请利用你的研究结论和另一种方法计算以下给出的问题,从而对你猜想的可靠性作出自己的评价.问题:“已知等差数列的前项和,前项和,求数列的前2010项的和.”例题8对于数列,如果存在一个正整数,使得对任意的都有成立,那么就把这样一类数列称作周期为的周期数列,的最小值称作数列的最小正周期,以下简称周期.例如当时
8、是周期为的周期数列,当时是周期为的周期数列.(1)设数列满足,(、不同时为),且数列是周期为的周期数列,求常数的值;(2)设数列的前项和为,且若,试判断数列是否为周期数列,并说明理由;若,试判断数列是否为周期数列,并说明理由;(3)设数列满足,数列的前项和为,试问是否存在、,使对任意的都有成立,若存在,求出、的取值范围;不存在, 说明理由.例题9已知点、是双曲线:的左右焦点,其渐近线为,且右顶点到左焦点的距离为3.(1)求双曲线的方程;(2)过的直线与相交于、两点,直线的法向量为,且,求的值;(3)在(2)的条件下,若双曲线在第四象限的部分存在一点满足,求的值及的面积.例题10定义的“倒平均数”为已知数列前项的“倒平均数”为,记(1)比较与的大小;(2)设函数,对(1)中的数列,是否存在实数,使得当时,对任意恒成立?若存在,求出最大的实数;若不存在,说明理由(3)设数列满足,且,且,且是周期为3的周期数列,设为前项的“倒平均数”,求例题11对于项数为m的有穷数列数集,记(k=1,2,m),即为中的最大值,并称数列是的控制数列.如1,3,2,5,5的控制数列是1,3,3,5,5.(1)若各项均为正整数的数列的控制数列为2,3,4,5,5,写出所有的;(2)设是的控制数列,满足(C为常数,k=1,2,m).求证:(k=1,2,m);(3)设m=100,常数.若,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年1月广东广州市天河区美好居幼儿园编外聘用制专任教师招聘1人考试备考试题及答案解析
- 2026新疆昆东经开区管委会招聘19人考试备考试题及答案解析
- 2026青海海东市第二人民医院校园引才招聘10人考试参考题库及答案解析
- 2026湖南师大附中双语实验学校(南校区)教师招聘考试备考题库及答案解析
- 2026福建厦门市集美区新亭幼儿园非在编教职工招聘1人考试参考试题及答案解析
- 2026中煤陕西能源化工集团有限公司面向社会招聘54人考试参考题库及答案解析
- 2026年西安庆华医院招聘(9人)考试参考题库及答案解析
- 2026上海大学招聘岗位210人(第一批)考试参考试题及答案解析
- 高级护理查房:姑息治疗与安宁疗护
- 2026年河南实达国际人力资源合作有限公司关于招聘公共安全服务人员备考题库参考答案详解
- T∕CCTAS 75-2023 导轨式胶轮有轨电车工程设计规范
- 生活污水清运方案
- DB31-T 1518-2024 城市轨道交通通信信号数字化运维系统通.用要求
- 北京市北师大附中2024-2025学年高一上学期期末考试数学试卷(含答案)
- 2024年度三人金融投资公司合伙协议3篇
- 市政工程施工机械管理制度
- 带货主播年终述职报告
- 成都大学《C语言程序设计》2023-2024学年第一学期期末试卷
- JJF 1375-2024机动车发动机转速测量仪校准规范
- 沪教版2024九年级上册化学各章节必背知识点复习提纲
- DL∕T 1512-2016 变电站测控装置技术规范
评论
0/150
提交评论