版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Bezier and Spline Curves and Surfaces1Angel: Interactive Computer Graphics 5E Addison-Wesley 2009原著Ed AngelProfessor of Computer Science, Electrical and Computer Engineering, and Media ArtsUniversity of New Mexico编辑 武汉大学计算机学院图形学课程组2Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Objective
2、sIntroduce the Bezier curves and surfacesDerive the required matricesIntroduce the B-spline and compare it to the standard cubic Bezier3Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Beziers IdeaIn graphics and CAD, we do not usually have derivative dataBezier suggested using the same 4
3、data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form 4Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Approximating Derivativesp0p1p2p3p1 located at u=1/3p2 located at u=2/3slope p(0)slope p(1)u5Angel: Interactive Computer Graphics 5E Addiso
4、n-Wesley 2009Equationsp(0) = p0 = c0p(1) = p3 = c0+c1+c2+c3p(0) = 3(p1- p0) = c0p(1) = 3(p3- p2) = c1+2c2+3c3Interpolating conditions are the sameApproximating derivative conditionsSolve four linear equations for c=MBp6Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Bezier Matrixp(u) = uT
5、MBp = b(u)Tpblending functions7Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending FunctionsNote that all zeros are at 0 and 1 which forcesthe functions to be smooth over (0,1)8Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Bernstein PolynomialsThe blending functions are
6、a special case of the Bernstein polynomialsThese polynomials give the blending polynomials for any degree Bezier formAll zeros at 0 and 1For any degree they all sum to 1They are all between 0 and 1 inside (0,1) 9Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Convex Hull PropertyThe prope
7、rties of the Bernstein polynomials ensure that all Bezier curves lie in the convex hull of their control pointsHence, even though we do not interpolate all the data, we cannot be too far awayp0p1p2p3convex hullBezier curve10Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Bezier PatchesUsi
8、ng same data array P=pij as with interpolating formPatch lies inconvex hull11Angel: Interactive Computer Graphics 5E Addison-Wesley 2009AnalysisAlthough the Bezier form is much better than the interpolating form, we have the derivatives are not continuous at join pointsCan we do better?Go to higher
9、order BezierMore workDerivative continuity still only approximateSupported by OpenGLApply different conditions Tricky without letting order increase12Angel: Interactive Computer Graphics 5E Addison-Wesley 2009B-SplinesBasis splines: use the data at p=pi-2 pi-1 pi pi-1T to define curve only between p
10、i-1 and piAllows us to apply more continuity conditions to each segmentFor cubics, we can have continuity of function, first and second derivatives at join pointsCost is 3 times as much work for curvesAdd one new point each time rather than threeFor surfaces, we do 9 times as much work 13Angel: Inte
11、ractive Computer Graphics 5E Addison-Wesley 2009Cubic B-splinep(u) = uTMSp = b(u)Tp14Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending Functionsconvex hull property15Angel: Interactive Computer Graphics 5E Addison-Wesley 2009B-Spline Patchesdefined over only 1/9 of region16Angel: I
12、nteractive Computer Graphics 5E Addison-Wesley 2009Splines and BasisIf we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segmentsWe can rewrite p(u) in terms of the data points asdefining the basi
13、s functions Bi(u)17Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Basis FunctionsIn terms of the blending polynomials18Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Generalizing SplinesWe can extend to splines of any degree Data and conditions to not have to given at equally
14、 spaced values (the knots)Nonuniform and uniform splinesCan have repeated knotsCan force spline to interpolate pointsCox-deBoor recursion gives method of evaluation19Angel: Interactive Computer Graphics 5E Addison-Wesley 2009NURBSNonuniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,zCan interp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年舟山群岛新区六横管理委员会招聘3人参考题库附答案
- 2025广东茂名高州市委办公室选调公务员考试模拟卷附答案
- AI赋能药物研发:技术应用与实践案例
- 2026宁夏德泓建设发展集团有限责任公司招聘专业技术人员7人笔试参考题库及答案解析
- 2026广东广州市天河区东风实验小学招聘语文、数学、音乐(舞蹈)教师笔试备考试题及答案解析
- 2026广西防城港市直属机关幼儿园春季学期顶岗教师和保育员招聘3人笔试备考题库及答案解析
- 2026广东佛山市南海区狮山镇孝德小学招聘财务人员1人笔试模拟试题及答案解析
- (拓展拔高)2025-2026学年下学期人教统编版小学语文五年级第二单元练习卷
- 2026年徽商银行总行金融科技岗社会招聘笔试模拟试题及答案解析
- 2026年柳州铁道职业技术学院高职单招职业适应性测试模拟试题有答案解析
- 2026年寒假作业实施方案(第二版修订):骐骥驰骋势不可挡【课件】
- 2025年中国药科大学马克思主义基本原理概论期末考试笔试真题汇编
- 2026年辽宁现代服务职业技术学院单招职业倾向性测试题库附答案
- 2025教资国考真题试卷及答案
- 广东省汕头市金平区2024-2025学年九年级上学期期末物理试题(含答案)
- 临床用血技术规范2025年版与2000年版对照学习课件
- 自然资源执法考试试题及答案
- 梅毒检验报告课件
- 2025秋冀人版(新教材)小学科学三年级上册知识点及期末测试卷及答案
- 医院感染管理年度报告
- 无人机驾驶员培训基地项目可行性研究报告
评论
0/150
提交评论