




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、Bezier and Spline Curves and Surfaces1Angel: Interactive Computer Graphics 5E Addison-Wesley 2009原著Ed AngelProfessor of Computer Science, Electrical and Computer Engineering, and Media ArtsUniversity of New Mexico编辑 武汉大学计算机学院图形学课程组2Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Objective
2、sIntroduce the Bezier curves and surfacesDerive the required matricesIntroduce the B-spline and compare it to the standard cubic Bezier3Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Beziers IdeaIn graphics and CAD, we do not usually have derivative dataBezier suggested using the same 4
3、data points as with the cubic interpolating curve to approximate the derivatives in the Hermite form 4Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Approximating Derivativesp0p1p2p3p1 located at u=1/3p2 located at u=2/3slope p(0)slope p(1)u5Angel: Interactive Computer Graphics 5E Addiso
4、n-Wesley 2009Equationsp(0) = p0 = c0p(1) = p3 = c0+c1+c2+c3p(0) = 3(p1- p0) = c0p(1) = 3(p3- p2) = c1+2c2+3c3Interpolating conditions are the sameApproximating derivative conditionsSolve four linear equations for c=MBp6Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Bezier Matrixp(u) = uT
5、MBp = b(u)Tpblending functions7Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending FunctionsNote that all zeros are at 0 and 1 which forcesthe functions to be smooth over (0,1)8Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Bernstein PolynomialsThe blending functions are
6、a special case of the Bernstein polynomialsThese polynomials give the blending polynomials for any degree Bezier formAll zeros at 0 and 1For any degree they all sum to 1They are all between 0 and 1 inside (0,1) 9Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Convex Hull PropertyThe prope
7、rties of the Bernstein polynomials ensure that all Bezier curves lie in the convex hull of their control pointsHence, even though we do not interpolate all the data, we cannot be too far awayp0p1p2p3convex hullBezier curve10Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Bezier PatchesUsi
8、ng same data array P=pij as with interpolating formPatch lies inconvex hull11Angel: Interactive Computer Graphics 5E Addison-Wesley 2009AnalysisAlthough the Bezier form is much better than the interpolating form, we have the derivatives are not continuous at join pointsCan we do better?Go to higher
9、order BezierMore workDerivative continuity still only approximateSupported by OpenGLApply different conditions Tricky without letting order increase12Angel: Interactive Computer Graphics 5E Addison-Wesley 2009B-SplinesBasis splines: use the data at p=pi-2 pi-1 pi pi-1T to define curve only between p
10、i-1 and piAllows us to apply more continuity conditions to each segmentFor cubics, we can have continuity of function, first and second derivatives at join pointsCost is 3 times as much work for curvesAdd one new point each time rather than threeFor surfaces, we do 9 times as much work 13Angel: Inte
11、ractive Computer Graphics 5E Addison-Wesley 2009Cubic B-splinep(u) = uTMSp = b(u)Tp14Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Blending Functionsconvex hull property15Angel: Interactive Computer Graphics 5E Addison-Wesley 2009B-Spline Patchesdefined over only 1/9 of region16Angel: I
12、nteractive Computer Graphics 5E Addison-Wesley 2009Splines and BasisIf we examine the cubic B-spline from the perspective of each control (data) point, each interior point contributes (through the blending functions) to four segmentsWe can rewrite p(u) in terms of the data points asdefining the basi
13、s functions Bi(u)17Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Basis FunctionsIn terms of the blending polynomials18Angel: Interactive Computer Graphics 5E Addison-Wesley 2009Generalizing SplinesWe can extend to splines of any degree Data and conditions to not have to given at equally
14、 spaced values (the knots)Nonuniform and uniform splinesCan have repeated knotsCan force spline to interpolate pointsCox-deBoor recursion gives method of evaluation19Angel: Interactive Computer Graphics 5E Addison-Wesley 2009NURBSNonuniform Rational B-Spline curves and surfaces add a fourth variable w to x,y,zCan interp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 违法建筑拆除与建筑安全评估合同协议
- 参赛证明设计方案
- 街道防汛项目建设方案
- 幼儿园意外伤害的急救与预防培训
- 油漆技师考试题及答案
- 环境健康与毒理学研究框架
- 在职口语考试题及答案
- 招商专员面试题及答案
- 2026版《全品高考》选考复习方案生物0506 微专题6 基因位置的判断及相关实验设计含答案
- 汽车美容与装饰实训课件 18-0项目七 任务三 后尾翼板安装饰实训
- 煤矸石处置合同范本
- 中暑急救培训课件
- 能源管理体系及节能知识培训课件
- 《SOP编写培训》课件
- 《纺织工艺》课件
- 厨房规范参观流程
- 2025年陕西汉中市略阳县绿色循环经济产业园区管委会招聘笔试参考题库附带答案详解
- 2025年中煤集团招聘笔试参考题库含答案解析
- 动设备监测课件 转动设备状态监测与故障诊断
- 小龙虾啤酒节小龙虾啤酒音乐节活动策划方案
- 植物分类完整版本
评论
0/150
提交评论